
The Statistical Data Viewer

Volker Nannen

April, 2003

Abstract

This is the manual to the Statistical Data Viewer . The motivation for
writing this application and an example of its actual use are discussed
in my master’s thesis [Nan03] on machine learning. If you simply want
to get started and explore the application by yourself, read Section 2.3
of my thesis. It takes you through all the steps of setting up a simple
experiment. The thesis, the source code of the application and the binaries
are all available at

http://volker.nannen.com/work/mdl

Contents

Contents 1

1 Experimental verification 2
1.1 The Statistical Data Viewer . 2
1.2 A simple experiment . 5

2 Manual 11
2.1 The editor . 11
2.2 The scientific plots . 12
2.3 Defining a process . 13
2.4 Taking a sample . 17
2.5 Working with polynomials . 19
2.6 The file format . 23
2.7 The Vandermonde object . 24

3 Some implementation details 24
3.1 Program requirements . 24
3.2 Functional division . 25
3.3 The programming environment 26
3.4 Core algorithms . 27

References 29

Index 30

http://volker.nannen.com/work/mdl

1 Experimental verification

As an expert on statistics and machine learning you are asked to supply a
method for model selection to some new problems:

A number of deep sea mining robots have been lost due to system
failure. Given the immense cost of the robots, the mining company
wants you to predict the risk of a loss as accurate as possible. Up to
now about a hundred of the machines have been lost, under very dif-
ferent conditions. Decennia of experience with deep sea mining have
taught the mining company to use some sophisticated risk evaluation
models that you have to apply. Can you recommend MDL?

A deep sea mining robot has got stuck between some rocks. The
standard behaviors that were supposed to free the robot have failed.
Some of the movements it made have won it partial freedom, oth-
ers have made the situation only worse. So far, about a hundred
movements have been tried and the outcomes have been carefully
recorded. To choose the next action sequence, can you recommend
MDL?

Before we are going to use MDL on problems that are new to us, we want
to be sure that it is indeed a strong theory, valid even without the need of any
preprocessing of the data or other optimizations that are common if a method is
repeatedly applied to the same domain. In the case of MDL there are countless
ways of expanding and compressing data and sooner or later we will find one
that matches good models to short descriptions in a specific domain. But this
does not convince us that it can be universally applied.

To experimentally verify that MDL would be a good choice to solve the problems
above, we want to

1. test it on a broad variety of problems

2. prove that we use the shortest description possible

1.1 The Statistical Data Viewer

There are two factors that limit the type of data that is usually used for statis-
tical experiments: availability and programming constraints.

Data availability. A major problem in machine learning and in statistics in
general is the availability of appropriate data. One of the basic principles of
statistics says that a sample that has been used to verify one hypothesis cannot
be used to verify another one. And one and the same sample can never be used
to both select and to prove a hypothesis. If we would do so, we would simply
optimize on the sample in question.

This applies to model selection as well. Not only are the individual models
hypotheses in the statistical sense, a general method for model selection can

2

1 EXPERIMENTAL VERIFICATION

itself be viewed as a hypothesis. If we want to experimentally verify methods
for model selection we need a large supply of unspoiled problems and data.

Mathematical programming. A major obstacle to an objective diversity of
the data is the way the common mathematical packages work. They are based
on scripting languages that make heavy use of predefined function calls. This
integrates nicely with most mathematical concepts, which are usually defined
as functions. But it is not the preferred way to handle complex data structures
or to conduct sophisticated experiments. It also severely reduces the quality of
the outcome of an experiment. It is quite difficult and tiring to manipulate the
graphical representations of data by using function calls.

Another problem of a function oriented approach is that it is the responsibility
of the user to keep the definitions and the results of an experiment together.
Users are often reluctant to play with the settings of complex experiments as
that requires an extensive version control of scripts and respective results. And
instead of spending a lot of time on writing a lot of different scripts for a
lot of different experiments, researchers tend to do only minor changes to an
experiment once it works correctly, and repeat it on large amounts of similar
data. It is easier to try a method ten thousand times on the same problem space
than to try it a few times on two different problem spaces.

A visual approach. To overcome the limitations of mathematic scripting and
to guarantee diversity of the learning problems in an objective way we developed
the Statistical Data Viewer : an arbitrary precision math application with a
modular graphical user interface that can visualize all the abstract difficulties
of model selection. It is well documented and can be downloaded for free at

http://volker.nannen.com/work/mdl

The Statistical Data Viewer makes all the definitions and results of an experi-
ment available through a sophisticated editor. Experiments can be set up in a
fast and efficient way. Problems can visually be selected for diversity. The per-
formance of selection methods can be analyzed in a number of interactive plots.
All graphical representations are fully integrated into the control structure of
the application, allowing the user to change views and to select and manipulate
anything they show.

To develop a working application within reasonable limits of time, the first
version of the application is limited to the model family of polynomials and to
two-dimensional regression problems, which are easier to visualize. Polynomials
are used widely throughout science and their mathematics are well understood.
They suffer badly from overfitting.

Great care was taken to give uninitiated students and interested lay persons
access to the theory as well. No scripting language is needed to actually set
up an experiment. The predefined mathematical objects—problems, samples,
models and selection methods—are all available as visible objects. They can be
specified and combined through the interactive editor which is extremely easy to
use. The essential versions of MDL are implemented. They can be analyzed and
compared with another independent and successful method for model selection,

3

http://volker.nannen.com/work/mdl

1.1 The Statistical Data Viewer

cross-validation. In addition, the user can try his or her own penalization term
for two-part MDL.

The progress of an experiment is observable and the execution can be disrupted
at any moment. If possible, the graphs in the plots show the state of an ex-
periment during its execution. It is possible to reproduce everything with little
effort. All the data are saved in a standardized well documented format that
allows for verification and further processing by other programs. The graphs
are of scientific quality and available for print.

Available learning problems. To provide the user with a broad range of
interesting learning problems, a number of random processes are available. They
include

• smooth functions which can be approximated well by polynomials, e.g. the
sinus function

• functions that are particularly hard to approximate like the step function

• fractals

• polynomials

When taking a sample from a process it can be distorted by noise from differ-
ent distributions: Gaussian, uniform, exponential and Cauchy, which generates
extreme outliers. The distribution over the support of a process can also be
manipulated. It can be the uniform distribution or a number of overlapping
Gaussian distributions, to simulate local concentrations and gaps.

Samples can also be loaded from a file or drawn by hand on a canvas, to pinpoint
particular problems.

Objective generalization analysis. To map the performance in minimizing
the generalization error in an objective way it is possible to check every model
against a test sample drawn from the same source as the training sample. This
has drawn some criticism from experts as the conventional way to measure the
generalization error seems to be to check a model against the original source if
it is known. I opted against this because:

• When speaking of generalization error the check against a test sample
gives a more intuitive picture of the real world performance.

• For data drawn by hand or loaded from a file the original distribution
might be unknown. In this case all we can do is to set aside part of the
data as a test sample for evaluation. Depending on whether the source
is known or unknown we now would have two different standards, the
original function for known sources and a test set for unknown sources.

• If the source is known the test sample can be made big enough to faithfully
portray the original distribution (by the law of large numbers) and give
as fair a picture of the generalization error as a check against the original
process.

4

1 EXPERIMENTAL VERIFICATION

• When using the original source the correlation between model and source
has to be weighted against the distribution over the support set of the
source. Especially in the case of multiple Gaussian distributions over the
support this can be extremely difficult to compute.

• Although we concentrate on i.i.d. samples, this method allows us also
to train a model on a sample with Gaussian noise and to measure the
generalization error on a test sample that was polluted by Cauchy noise
(extreme outliers) and vice versa or to use different distributions over the
support set.

An independent method to compare. Comparing the predictions of MDL
with the generalization analysis on an i.i.d. test set does not show whether MDL
is a better method for model selection than any other method. For this reason
the application includes an implementation of cross-validation. Cross-validation
is a successful method for model selection that is not based on complexity theory.
It can be seen as a randomized algorithm where we select the model that is most
likely to have a low generalization error. The method divides the training sample
a couple of times into a training set and a test set. For each partition it fits the
model on the training set and evaluates the result against the respective test set
in the same way as the generalization analysis uses an independent test sample.
The results of all partitions are combined to select the best model.

1.2 A simple experiment

To make you familiar with the Statistical Data Viewer and to introduce you to
some of the basic problems of model selection, this section will take you through
all the steps of a simple experiment.

The sinus wave is very common in nature and comparatively easy to model by
a polynomial. To find out whether MDL is a useful method for data prediction
we conduct our first experiment on a sinus wave of a single frequency.

Experiment 1: validity of MDL

Hypothesis: MDL can minimize the generalization error.

Source: a sinus wave with frequency f = 0.5 and amplitude 1.

Noise: normal (Gaussian) with variance σ2 = 1.

Support: uniform over the interval [0, 10].

Sample: three samples of 50, 150 and 300 points.

Test set: i.i.d., 3,000 points.

Figure 1 shows how the source signal is created in the application and Figure 2
shows how the samples are drawn from the source and how an experiment for
model selection is started.

5

1.2 A simple experiment

Figure 1: Creating the source signal

Clicking on the new project icon has created a new project. The project name
can be defined and the attributes of the main plot can be set, e.g. range, size,
scale, color and the origin of the rulers. The list view makes it possible to organize
the attributes into a comprehensive hierarchy and to access them easily.

Clicking on the process icon has loaded a new process into the editor. From the
available processes the sinus wave has been selected and the attributes were set:
one frequency of f = 0.5 and support interval [0, 10]. A click on the make button
in the editor has created the signal.

6

1 EXPERIMENTAL VERIFICATION

Figure 2: Creating the samples and starting an experiment

Clicking on the sample icon loads a new sample into the editor. A sample of 50
points has already been created and is visible on the main plot. Now the test sample
is being defined: source and noise are specified and the size is entered. Clicking on
the take button in the editor will draw the sample.

Clicking on the polynomial icon has loaded a new polynomial into the editor. The
training and the test sample are already specified and now the method for model
selection is chosen from the pull-down menu. After the maximum order for the
selection process is entered, a click on the fit button in the editor will start the
experiment.

7

1.2 A simple experiment

Figure 3: Sinus wave, witnessed by 50 points

The generalization analysis is started: all polynomials in the range 0–40 degrees are
fitted to the 50 training points and then checked against the 3,000 test points. The
results are immediately plotted. The progress dialog allows to cancel the execution
if it takes too long or if the early results call for a different design of the experiment.

4 experiments have been conducted on the 50 point sample and the results were
plotted into separate plots. The generalization analysis in the upper right shows
that the 0-degree polynomial is the best choice. In the lower part from left to right
are the three results from cross-validation, mixture MDL and Rissanen’s original
two-part MDL. All agree with the analysis that zero degrees is the best choice.

8

1 EXPERIMENTAL VERIFICATION

Figure 4: Sinus wave, witnessed by 150 and 300 points

150 point training sample. The generalization analysis shows 17 degrees as
the optimum. Mixture MDL and Rissanen’s original version slightly underfit and
choose 15 as the optimum.

Cross-validation shows essentially the same picture as with 50 points. Anything
from 0 to 10 degrees is good but 0 degrees is best.

300 point training sample. The generalization analysis now shows 18 degrees
as optimal. 15-25 degrees are less than 5 percent worse than the optimum error.
From 40 degrees on the generalization error increases rapidly.

All methods now generalize well. Rissanen’s original version and mixture MDL
choose 15 degrees, cross-validation 20 degrees.

9

50 points. A sinus wave with f = 0.5 shows 10 alternating peaks and valleys
over the interval [0, 10]. An n-degree polynomial can have at the most n− 1
alternating peaks and valleys. We therefore expect polynomials with a low
generalization error to be of at least 11 degrees.

Figure 3 shows that a training set of 50 points is too small to capture this
threshold. 11 degrees do not show a local decrease in generalization error. On
the contrary, from this point on the generalization error starts to get really bad.
The best generalization error is achieved for the 0-degree polynomial, which is
nothing but the mean of the training sample. For degree 0–10 the generalization
error is almost as good and never worse than two times the optimum. But for
11 degrees the expected error rises to ten times the optimum and then increases
so fast that the log-log scale is needed to make the result readable.

All three methods agree that the 0-degree polynomial is optimal. Cross-validation
even predicts correctly that exactly from 11 degrees onwards the generalization
error will get very bad.

150 points. With 150 points the generalization analysis shows that the op-
timum lies at 17 degrees. The error between 14 and 18 degrees is less than
half way between the optimum and the error of the 0-degree polynomial. From
21 degrees onwards the generalization error is never again lower than that of a
0-degree polynomial. After that it increases so rapidly that the log-log scale
has to be used again.

Mixture MDL and Rissanen’s original version give a good picture of the situa-
tion. Both choose 15 degrees as the optimum and predict a low generalization
error for models between 14 and 18 degrees. Cross-validation is a disappoint-
ment. It shows essentially the same picture as with 50 points: almost constant
generalization error for 0–10 degrees, optimum for 0 degrees and a very high
generalization error beyond 10 degrees.

300 points. With 300 points we see all methods generalizing well. The gener-
alization analysis now shows 18 degrees as optimal. 13–33 degrees are less than
half way between a 0-degree polynomial and the optimum. From 40 degrees on
the generalization error increases rapidly. Rissanen’s version chooses 17 degrees,
mixture MDL 15 degrees and cross-validation 20 degrees, all of which are less
than 10 percent worse than the optimum.

The three methods not only make a good choice, they also capture the general
outline of the generalization analysis. Polynomials of degree 15–25 are shown as
good candidates by all the three methods. They also show that anything from
35 onward is worse than taking the 0-degree polynomial.

Conclusion. Our simple experiment has shown that both our versions of MDL
are good methods for data prediction and error minimization. When compared
to cross-validation they can be called at least of equal strength.

10

2 MANUAL

2 Manual

The main window. The main window of the application is divided into a main
menu, a workbench with multiple plots and a sophisticated editor. The user can
work simultaneously on a number of different experiments, alias projects. They
can be created, opened, selected and deleted via the main menu, by using the
pull-down menus or the standard GUI icons. The way plots are shown on the
workbench can also be changed via the main menu. Icons allow the user to add
processes, samples or models to an experiment.

main menu

editor

list box

workbench for

scientific plots

Figure 5: The main window of the application

When a new project is created, a new main plot is put on the workbench and
the project is loaded into the editor. The main plot will show all the processes,
samples and models of an experiment. For each selection method used, a new
plot is added which shows the predictions of that method. A plot initially has a
white background and an x and an y-axis with normal scale. These properties
can be changed.

Above the editor is a list box that contains all the objects of an experiment.
Creating an object via the main menu, clicking on its graph in one of the plots
or selecting it from the list box will load the object into the editor. Once in the
editor, the attributes of an object can be evaluated and changed. The plots and
the project itself are also in the list box and can be loaded into the editor as
well.

2.1 The editor

The editor shows the attributes of an object in a hierarchical, comprehensive
way. Attributes include names, the color of a graph, size and scale of the
plot, the number of points of a sample and, very important, the parameters
of functions, distributions and selection methods. The seed for the random
generator is also an attribute of objects that include random processes.

The editor shows the attributes in two columns. The left column shows the
name of an attribute and the right column shows its respective value. If the
value can be manipulated it is printed in bold. Clicking on an attribute opens a
little editor in its place. For boolean attributes this is a button that can toggle
its state. Other attributes can be selected from a list or entered into a text

11

2.2 The scientific plots

field, depending on the type. If the attribute has a default value this value is
available by clicking on a small button to the right of the editor.

Some attributes represent actions. Actions include copying or deleting the ob-
ject, taking a sample from a process or starting a selection method. Clicking on
an action attribute will start the action. If the action involves a random process,
the seed attribute is important. If the seed is zero, which is the default, the
random generator will be fed with the computer time. Otherwise it will be fed
with the actual seed. An action that includes a random process will always give
the same results if fed with the same seed.

Objects that are visible on one of the plots have a graph attribute that defines
its color, style and visibility. Any of the many color names that are defined in
the file rgb.txt on all Linux/Unix systems is a valid input. Numerical input of
the format #rrggbb is also accepted.

Objects can even have other objects as attributes. When a sample is taken
from a process, the process and the distribution around the process are its
attributes. The object attributes of a model are the sample that it is trained on
and the method that defines the number of parameters. Such object attributes
can usually be selected from a pull-down menu. Once selected, clicking on the
object attribute will expand it and its own attributes become visible. An object
and its object attributes can be browsed much like a file tree on the common
windowing systems.

2.2 The scientific plots

The functionality of the scientific plots is of central importance to the applica-
tion. Graphs have always played an important role in mathematics. Sometimes
the accessibility of a theory depends heavily on the availability of apropriate
graphs. A scientific application should not only produce graphs as an optional
add-on but give them a central position in the control structure.

In the Statistical Data Viewer a plot can be loaded into the editor by selecting it
from the list box or by clicking on one of its axes. It has the obvious attributes
height, width, background color and margin. No graphs are shown on the
margin. It also has two axis objects as attributes. The attributes of an axis
are color and visibility, location on the plot and the range. If a plot has to
show everything in the range 0–10 along the x-axis, this is the place to define
it. For every axis a number of scales can be chosen: simple (which is normal),
logarithmic, log-log, exponential etc.

When moving the mouse over a plot, the location of the mouse along the x and
y-axis is shown in a small box at the bottom of the main window. This is very
helpful when analysing a graph. Hovering over a graph in the plot will show
its name. Clicking on it with the left mouse button will load it into the editor.
Clicking on a plot with the middle mouse button will zoom into the section
around the mouse. Moving the mouse while pressing the middle button will
move the area that is zoomed into. Releasing the middle mouse button will let
the zoom disappear.

12

2 MANUAL

The behaviour of the right mouse button depends on which object is currently
loaded into the editor. If it is the plot itself, clicking on the right button and
then moving the mouse over a section of the plot will create a rectangle between
the mouse and the point where the button was pressed first. If the mouse is not
on the plot anymore when the button is released, nothing happens. But if it is,
the section that is within the rectangle is defined as the new range of the axes.
In this way portions of the plot that are of particular interest can be magnified
again and again. To go back to the old range of the axes the editor has to be
used. Clicking on one of the axes will load the plot into the editor.

A plot is saved by selecting the save plot option from the main menu. The
application saves all plots in the PNG format. Use the convert program on
Linux/Unix or your favourite image processor to convert it to another format.

2.3 Defining a process

Besides the standard attributes, a process has a series object that defines the
type of the process, two attributes that define the beginning and the end of the
range over the x-axis of the process and a make action which will create the
process once its properties are defined.

Seven different processes are available as predefined two-dimensional learning
problems. Most of them are common in nature. They include sinus waves,
time series, fractals and the step function. Some are smooth, others have sharp
corners. Some have extreme values, others deviate only slightly from the main
path. Using the default parameters of a process and the random generator
will generate a broad range of interesting problems. Manipulating the process
specific parameters will generate an even broader variety of different problems.

Besides the process specific parameters, all processes have a system noise, a
seed, a steps and a scale attribute. Because the evolution of a time series
often involves some system noise, most processes depend on the random gener-
ator. The system noise must not be confused with the deviation of the points
of a sample along the y-axis. It is a major factor in defining the shape of a
time series. The system noise attribute defines the variance of the Gaussian
distribution over this noise. Setting the seed attribute to a value other than
zero will always produce the same shape for such a process.

The steps attribute defines how fast the process will evolve over the defined
range of the x-axis. The default values are set in a way that most series can
be approximated well by a 50 degrees polynomial. More steps will let the series
evolve faster and a higher degree polynomial will be needed to learn it. The
scale attribute defines the amplitude of a process along the y-axis.

In all graphs the horizontal x-axis shows the time t and the vertical y-axis shows
the value y as a function of t. When more than one variable changes with time,
only the y value is visualized in the graph and considered for model selection.

13

2.3 Defining a process

Autoregression. Autoregressive time series are particularly common in na-
ture. The value yt at time t of such a series is the weighted sum

yt = a0 +
n∑

i=1

ai yt−i + ε (1)

over n previous values of y. ε is the system noise. The Statistical Data Viewer
allows to specify six different parameters a0–a5 but three parameters is usually
quite enough. Figure 6 shows an example with a1 = 0.5, a2 = 0.5. The other
parameters are equal to zero:

Figure 6: Autoregression

Sinus wave. The sinus wave is also very common. Five frequencies can be
specified, each with an individual offset. The resulting function is

f(x) =
5∑

i=1

sin(fi x + oi) (2)

The example in Figure 7 uses zero offsets and the four frequencies f1 = 1.05,
f2 = 0.8, f3 = 0.55 and f4 = 0.15:

Figure 7: Sinus wave

Logistic map. A logistic map is a time series of the form

yt = a yt−1 (1− yt−1) + ε (3)

14

2 MANUAL

with ε the system noise. It was first published by the Belgian mathematician
Pierre Verhulst sometime between 1838 and 1850.

The example in Figure 8 has a = 0.5:

Figure 8: Logistic map

Lorenz attractor. The famous Lorenz attractor is a self similar object. It is
also a time series. E.N. Lorenz discovered it when he was working on models of
the weather [Lor63]. Its evolution is governed by the equations

yt = a (zt−1 − yt−1) + ε

zt = byt−1 − zt−1 wt−1 + ε

wt = yt−1 zt−1 − c yt−1) + ε

(4)

z and w are not shown in the graph and are not considered in the experiments.
The default values are a = 10, b = 28, c = 2.667:

Figure 9: Lorenz attractor

Pendulum. The movement of a noisy pendulum with orbit o and frequency f
is defined as

yt = sin
(
yt−2

)
− c yt−1 + f cos

(
o (t− 2)

)
+ ε (5)

The example in Figure 10 has c = 0.2, f = 0.5 and o = 0.67.

15

2.3 Defining a process

Figure 10: Pendulum

Step function. The step function oscillates n times between two values. The
example in Figure figure-step-function has n = 10 and oscillates between minus
ten and ten. The points where the function switches between values are chosen
at random. The same non-zero seed will produce the same step function.

Figure 11: Step function

Thom map. The Thom map is also a time series. R. Thom [Tho93] discovered
it when he searched for a simple discrete equivalent to the Lorenz equations
which were defined for continous time.

Figure 12: Thom map

yt = a yt−1 + b zt−1 + ε

zt = c yt−1 + d zt−1 + ε
(6)

16

2 MANUAL

The z-axis is not shown in the graph and is not considered in the experiments.
The example in Figure 12 has a = 0.5, b = 0.3, c = 0.3 and d = 0.4.

2.4 Taking a sample

There are five different ways to take a sample:

1. loading a sample from a file,

2. taking it from one of the predefined processes,

3. taking it from a polynomial,

4. drawing it by hand and

5. merging two or more samples into a new sample.

The method attribute defines which one will be used.

Loading a sample from a file. If the file method is selected, the user
has to select a file through the standard file browser. The file has to be in
ASCII format. Once the file is selected, a new window pops up and shows
the contents of the file. Now there are two ways to select the data: by reg-
ular expression or by column. The options can be selected by radio but-
tons. You should have some experience with regular expressions when using
this option. An introduction and a list of special characters are available at
http://doc.trolltech.com/3.1/qregexp.html#1.

If the regex option is chosen, a regular expression has to be entered for both the
x and the y values. All lines of the file are parsed. For each line that is matched
by both expressions a point is added to the sample. In order to work correctly,
the expression usually has to match more than only the intended value. The
number of the opening parenthesis that encloses the portion of the expression
that actually contains the value must be entered in a separate input field. You
can check whether the expressions capture the correct values by pressing the
apply button. It will show the captured portions of the text in different colors.
If you are satisfied, press the OK button.

Example: we want to study the number of sold products as a function of the
consumer price. The lines of our input file have the following format:

consumer price: 543.21, production cost: 342.23, items sold: 4300

A regular expression that will match the x-value is

^\D+(\d+\.?\d*)

and the first opening parenthesis captures the value. The y-value will be
matched by the expression

^(\D+\d+\.?\d*){2,2}\D+(\d+\.?\d*)

17

http://doc.trolltech.com/3.1/qregexp.html#1

2.4 Taking a sample

where opening parenthesis number three captures the value.

The other option is to use columns. Every line of the text is divided into a
number of columns by a regular expression. This expression is usually very
simple, e.g. white space or a colon. The column numbers that specify the x and
the y-value have to be entered. For each line of the file that has real values in
both columns a point is added to the sample.

Taking a sample from a process. In order to use this option, a process must
already have been specified. It can then be selected as an attribute of the sam-
ple. A distribution over the measurement noise should also be selected. There
are four distributions available: Gaussian, uniform, exponential and Cauchy.
The Cauchy distribution is important to simulate far outliers. Like the other
distributions the Cauchy distribution is symmetric around the mean and non-
increasing. But it has no calculable variance. Its density function is

P (x) =
s

π ((x− µ)2 + s2)
, (7)

where µ is the mean and s the distance between the mean and the point that
has half the probability of the mean.

The points will be taken at random over the support, which is the range along
the x-axis for which the process is defined. The grains attribute specifies the
distribution over the support. It can either be uniform or a number between
one and nine. If there is one grain, the distribution will be Gaussian around
the center of the support. If there are two grains, there will be a center at one
third and another at two thirds of the support range. The distribution over
the support will be the joint distribution of two Gaussian distributions. Three
grains will have a center at 1/4, 2/4 and 3/4 of the range etc. With nine grains
the joint distribution of nine Gaussian distributions is almost uniform.

After the desired size of the sample has been entered at the size attribute, a
click on the make action will take the sample from the process. To guarantee
that all experiments can be repeated, values of the seed attribute other than
zero will always produce the same sample under the same conditions.

Drawing a sample. Drawing a sample is straightforward. When this option
is chosen and the sample is in the editor, moving the mouse over the main plot
and pressing the right mouse button will produce points on the plot. Points can
also be drawn after a sample has already been loaded from a file or been taken
from one of the predefined processes. In this way particular problems can be
pinpointed, e.g. far outliers. You also can simulate noise along the entire range
of the y-axis for a limited range of x. In the example 3,000 points were taken
from a pendulum in the usual way. After that, 1,000 points were added by hand
to simulate corruption of the measurements at x = [4.6, 5.2] and x = [8.4, 9.3]

18

2 MANUAL

Pendulum with corrupted measurement

Taking a sample from a polynomial. Taking a sample from a polynomial
is very similar to taking a sample from a process. The only difference is that a
polynomial must be specified in a different way. Entering the parameters of a
polynomial by hand usually does not lead to the desired results. Instead, the
following procedure should be followed: first, draw a line by hand on the plot
that has the outline of the desired polynomial. Then, fit a polynomial of the
desired degree on this hand drawn line. How to do this will be explained in
the section on polynomials. This polynomial should then be used to take other
samples from it. The original hand drawn line can be deleted.

If you still insist on entering the parameters by hand, this can be done as well.
Save a project that contains a polynomial of the desired degree. All projects are
saved in XML format and can easily be edited by hand. Replace the parameters
of the saved polynomial by your own values and reload the experiment.

Merging samples. When the merge method is selected, up to four different
samples can be specified that will be merged into a new sample. As usual, the
take action will create the new sample from the specified source samples. The
source samples are not changed or deleted.

Splitting samples. A sample can also be split in two. This is useful when a
sample has been taken from a file or drawn by hand and we need to split it into
a training and a test sample. Splitting is not a method of a sample. You need
to select the split operator from the main menu.

Once created, the split operator is loaded into the editor. The sample that will
be split has to be selected and the number or percentage of points that will go
into subsample A must be entered. Clicking on the split action will split the
selected sample at random. The specified number of points will go to subsample
A and the rest will go to subsample B. The new samples are visible on the main
plot and are available from the list box. The selected sample is not changed or
deleted.

2.5 Working with polynomials

Create a polynomial object by clicking on the respective icon of the main
menu. Before using it, the method and the learn attribute must be specified.
For the learn attribute one of the samples of the project has to be selected
as the training sample. The optional test attribute allows to select another

19

2.5 Working with polynomials

sample as the test sample. Once the polynomial is fitted to the training sample
the mean squared error on the training sample is shown as the residual noise
attribute. If a test sample is selected, the mean squared error on the test sample
will be shown as the residual test noise attribute.

The method attribute allows the user to select among six options:

manual: specify the degree and precision of a polynomial by hand.

two-part MDL: find the optimum degree by penalization.

mixture MDL: by using the minimax algorithm for mixture MDL.

cross-validation: to compare with the performance of the MDL methods.

analysis: calculate the generalization error on a test sample.

complex analysis: repeat the generalization analysis over training sam-
ples of different size.

Using a method other than manual will open an additional plot that shows
the results of the method. Clicking on the graph of the additional plot will load
the polynomial into the editor, just like clicking on the polynomial in the main
plot.

The manual method. The manual method was specifically added to allow
the user to play with the parameters of a polynomial. You can specify the
degree of a polynomial and the precision in digits per parameter. Clicking on
the fit action will calculate the least square fit of the polynomial on the sample.
Playing with the precision will show you the effects of rounding. Usually, for less
than k/3 digits per parameter the polynomial cannot approximate the sample.
The mean squared error on the training sample becomes very high. k/2 gives
an almost optimum result. Higher precisions will let the mean squared error
decrease only marginally. Section 3.3 on page 28 tells you more about rounding
problems.

Clicking on the precision editor attribute will allow you to specify the pre-
cision for individual parameters. A window pops up with the value and the
precision of each individual parameter. The precisions can be changed and the
polynomial can be fitted again, resulting in the parameters that give the best
result for the specified precision.

The two-part MDL method. If you use this method or any of the other
methods that calculate an optimum degree, you cannot manually change the
degree or the precision of the polynomial. Rather, you specify the maximum
degree that will be looked at and the method will search for the best degree.
50 to 100 degrees as a maximum are usually quite enough to work with. The
rounding procedures give precise results for at least a 150 degrees1 but compu-
tations become awfully slow. If processor speed continues to grow at the current

1 more on this in Section 3.4

20

2 MANUAL

rate we will soon watch a 1,000 degree polynomial being fitted at a speed fast
enough for direct interaction. But this will not significantly alter our results.

The penalty attribute specifies the way the total code length is calculated.
The default is Rissanen’s original term, as calculated in Section 2.2 of the the-
sis [Nan03].

n log σ2 + k log n (8)

You can modify this term or replace it by the AIC, which is n log σ2 + 2k.
The penalty attribute will accept every function name that is specified in the
C/C++ math libraries: log(), ln(), sin(), cos(), sqrt(), and so on. The stan-
dard operators +, −, /, ∗,ˆ are defined. In addition, the following single letter
symbols are available:

n the size of the sample

k the degree of the polynomial

s the mean squared error σ2 of the polynomial on the sample

p the real number π

e the real number e

Clicking on the fit button will calculate the least square polynomial for every
degree smaller than the maximum degree. The complexity is calculated accord-
ing to the penalty term and immediately shown on the additional plot. Once the
complexity for all degrees has been calculated, the model that had the shortest
two-part complexity is selected as the good model. It is calculated and plotted
into the main graph.

If you want to save time and don’t want to look at every degree, specify the
number of steps parameter. If it is bigger than the maximum, all degrees
will be looked at. If it is smaller, only this number of degrees will be looked
at. Starting at the 0-degree polynomial and continuing to the maximum degree,
superfluous degrees will be left out at equal intervals.

The mixture MDL method. The mixture MDL method works exactly like
the two-part MDL method, except for the fact that no penalty term can be
specified.

The cross-validation method. This method also works like the two-part
MDL method without the penalty term. Future versions may allow to modify
the smoothing algorithm and the number of partitions used in the algorithm.

The analysis method. This method also works like the two-part MDL
method without the penalty term. But the test sample is now mandatory. Keep
in mind that it should contain at least 1,000 points. Don’t make it too big as this
will slow down calculations. 3,000 points have been proven to be a good size for

21

2.5 Working with polynomials

Figure 13: Complex generalization analysis

Left: Pendulum with 600 point training set and 3,000 point test set.

Right: Complex analysis with 20 different samples of size 30–600 points. Each
vertical line represents the generalization error for one sample, starting on the left
with the smallest sample. The lower the error the more the line deviates to the
right. The single horizontal line goes through all the optima. From a sample size
of 330 points onwards the optimum stays almost constantly at 41 degrees.

most learning problems. The optimum model according to the generalization
analysis is plotted into the main plot.

The complex analysis method. This last method was not introduced during
the experiments. Like the analysis method it calculates the generalization error
for all degrees. But it does so for training samples of varying size. The number
of samples attribute specifies how many samples are used. These samples are
subsets of the selected training sample. If the training sample has 600 points
and the number of samples is 20, the first set contains 30 points, the second 60,
the third 90 and so on. The test sample is not changed.

The plot of this method is three-dimensional. The x-axis shows the sample size,
the y-axis shows the degree and the z-axis shows the generalization error. The
view is tilted so that a high value along the z-axis results in a shift of a point
to the left. For each sample the generalization error is a vertical line along
the y-axis. The lower the generalization error, the more this line goes to the
right and the higher the error the more the line goes to the left. To mark the
optimum number of degrees per sample size, a single horizontal line connects
all the optima.

To get more reliable results for the generalization error per sample size, for small
samples the average is taken over multiple samples of the same size. For sample
sizes smaller than half the size of the original training sample the average is
taken over two independent samples of the same size. For samples smaller than
a third the average is taken over three and for samples smaller than a fourth
the average is taken over four independent samples of the same size.

The complex analysis method makes it possible to study the behavior of the
generalization error as a function of the size of the training set. If polynomials

22

2 MANUAL

converge only slowly with the original problem, the optimum will rise continu-
ously. But smooth functions like the sinus wave, the pendulum and the Lorenz
attractor usually show an initial increase followed by an almost flat region.

2.6 The file format

All projects are saved in XML2. The standard file extension used by the Statis-
tical Data Viewer is .sdv. XML is a well defined standard, there is no shortage
of fast and convenient XML parsers and XML can be read by humans. If a
file is corrupted or you miss a certain functionality in the editor you can easily
modify an .sdv file in a text browser.

XML is much more than just a human readable file format. It allows an ap-
plication to organize the contents of a project in a robust, standardized and
comprehensive way. Data can easily be exchanged, shared and combined with
other applications on different platforms. With the proper tools an XML file
can also easily be transformed into a webpage or a LATEX file.

An XML file looks much like an HTML file with a lot of tags that are enclosed
in brackets. Unlike HTML, all XML tags must either have a closing slash or
be matched by a closing tag of the same name preceeded by a slash. In an .sdv
file each mathematical object has its own tag name. Its attributes are listed
as name-value pairs of the format name="value". Objects and attributes have
the same name as in the application. As a rule, object names start in upper
case and attributes are in lower case. The example is a process object whose
attributes have not yet been specified:

<Process seed="0" begin="0" copy="false" end="10"
series="---" ID="3" name="process <1>" make="false" />

Some of the attributes are not visible in the editor, for example the ID attribute.
Don’t touch them, especially the ID attribute. If you keep the file consistent, the
application will read and accept your changes. Even if it doesn’t understand
them, the worst thing that will happen is that the application resorts to the
default values.

If an object has other objects as attributes, the initial tag doesn’t close with a
slash, only with a closing bracket. Next come the nested objects. The object
is ended by repeating the tag name in brackets, preceeded by another slash. In
the example below the process was defined as a pendulum without system noise.
Changing the system noise in the file is equivalent to changing it through the
editor.

<Process seed="0" begin="0" copy="false" end="10"
series="pendulum" ID="2" name="pendulum" make="false" >
<TimeSeries frequency="0.5" steps="1000" offset="0"
seed="0" orbit="0.67" scale="10" system_noise="0"
constant="0.2" ID="2" name="Pendulum system" />

</Process>

2 Extensible Markup Language. Look at http://www.w3.org/XML for literature and speci-
fications.

23

http://www.w3.org/XML

2.7 The Vandermonde object

Every sample has a Vandermonde object. The importance of the Vander-
monde matrix is explained in in Section 3.3 on page 27. It is essential to the
algorithms that work on the sample: least square fitting, calculating the Fisher
information and taking the mean squared error. Building the Vandermonde
matrix and especially putting it in triangular form are time expensive opera-
tions3. A Vandermonde matrix of size n× n is useful for polynomials of degree
n − 1 or lower. But, at least with the algorithms known to the author of this
application, for a higher degree polynomial a bigger Vandermonde matrix has
to be built from the sample and again put into triangular form. The attributes
of the Vandermonde object specify the dimension of the matrix and whether
it has already been built and put into triangular form.

Normally you shouldn’t use this object. Selecting a sample for a polynomial and
fitting an n-degree polynomial on it will build the n + 1 degree Vandermonde
matrix for you. The matrix is preserved and will be reused whenever needed. It
is saved and loaded together with the project. But remember that first fitting
a low degree polynomial on a sample and than fitting a high degree polynomial
will result in the expensive recalculation of the Vandermonde matrix.

3 Some implementation details

If you plan to add your own functionality to the Statistical Data Viewer you
should of course refer to the documentation that comes with the actual distribu-
tion. The following pages give only a general outline of design of the application.

3.1 Program requirements

These are the program requirements that stood at the basis of the Statistical
Data Viewer :

open source: high priority is given to programming techniques that en-
courage others to improve the program and to adapt it to their own
needs. In particular, this implies

• a single well known programming language

• use of well documented open source libraries

• a modular, object oriented design

• clean programming interfaces

• self documenting code

machine independence: the application has to work on the majority of
computer systems popular in academic research.

functional division: the interface must show a clear functional devision.
3 The time complexity of putting it into triangular form is O(n3).

24

3 SOME IMPLEMENTATION DETAILS

direct manipulation: all essential mathematical attributes of an object
have to be available for immediate manipulation and interpretation.

observability: all visible objects must reflect their current state. Progress
bars must give estimates of the duration of time consuming executions
and it must be possible to stop them at random.

usability: the application has to be accessible to students that are unfa-
miliar with the theory.

reproducibility: it must be possible to reproduce an experiment in all its
aspects. It must be possible to randomly load and save all states of
an experiment in a robust and fault tolerant way.

standard file format: all experiments are saved and loaded in XML.
XML is a well defined standard, there is no shortage of fast and
convenient XML parsers and XML can be read by humans.

broad input: it must be possible to enter samples in the following ways:

• read samples from a file

• take samples from a broad and interesting set of predefined processes

• draw and manipulate samples by hand

scientific output: the application must provide high quality plots which
can be used for publication.

scientific documentation: the used algorithms have to be fully docu-
mented as they might be influencing the results.

3.2 Functional division

As shown in Figure 14, the application is divided into four independent modules:

a main menu that satisfies all the standard expectations. It allows the
user to start a new project and to save, load or close an existing
one. It should eventually have a help section and should allow for
customization of the application.

a project which consists of a number of objects like processes, distribu-
tions, samples, models and methods for model selection. They can
be created, edited, copied, saved and deleted at random.

All mathematical computations are done within the project module.

an editor that allows for easy analysis and direct manipulation of all ob-
jects. Attributes are arranged in a comprehensive hierarchy. Actions
show immediate response. Standard input methods like choice lists,
buttons and text fields are used when appropriate. It is also possible
to restore default values after a change.

25

3.3 The programming environment

a plot where processes, samples, models, methods and experiments can
be observed and randomly selected for analysis and manipulation.
The execution of an experiment must be observable on the plot. The
graphical output must be of scientific quality and available for print.

Communication between the menu, a plot, a project and the editor is done
in XML. This allows for independent implementation of the different modules.
The editor could be an HTML page. A plot could be a Java applet. It is also
possible to let the mathematical objects communicate via XML. This helps to
distribute calculations over a network.

This first version of the Statistical Data Viewer is a proof of concept and hope-
fully not the final application. There are exceptions to the XML-communication
that should be eliminated. The programming interfaces can be simplified. It
should be possible to distribute calculations over a network. The final idea is to
have an open source system for statistical analysis that can be customized and
extended much like the LATEX system, with packages and front ends that can
change with the purpose of the system.

3.3 The programming environment

With ongoing standardization in the Linux/Unix world we now witness two
strong GUI libraries that run on almost all Linux and Unix machines: the
Gnome libraries and the KDE libraries, the latter build around a core of Qt
libraries. The Statistical Data Viewer is build on the core Qt libraries. They
are open source4, fast, strictly object oriented, well documented and to my
judgment quite beautiful. They are written in C++. A powerful programming
environment for KDE and Qt is available, KDevelop, which improves and speeds
up the development of large applications. Finally, Qt is platform independent.
Trolltech, the Norwegian company which develops Qt, takes great care to guar-
antee correct execution of code written for its Qt libraries on the major Linux
and Unix distributions as well as on MacIntosh and Microsoft Windows ma-
chines. Though the code has to be compiled again on each system, the fast and
reliable performance justifies this extra step.

4 Under the ’Q Public License’. If you want to use Qt for commercial software, you have to
pay, of course.

application

menu project editor plot

����
�

�
@

@
HHHH

Figure 14: Modules of the application

26

3 SOME IMPLEMENTATION DETAILS

Arbitrary precision library. To have full control over the arbitrary preci-
sion arithmetic and to optimize the essential time consuming algorithms, the
application uses an independent arbitrary precision library: MAPM5. MAPM
is a portable arbitrary precision math library which is open source. While most
other arbitrary precision libraries emphasize integer arithmetic, this library was
specifically designed for floating point arithmetic. A notable oddity of this li-
brary is that it handles precision in digits, not in bits [Rin01].

3.4 Core algorithms

Least square fitting. The method for linear regression used in the Statistical
Data Viewer is least square fitting based on Gaussian elimination. A k-degree
polynomial has k + 1 parameters:

fk(x) = a0 + a1x + · · ·+ akxk (9)

The squared error between such a polynomial and an n points sample
{(x1, y1) . . . (xn, yn)} is

σ2 =
n∑

i=1

(
yi − (a0 + a1xi + · · ·+ akxk

i)
)2

, (10)

the partial derivatives of which are

∂σ2

∂a0
= −2

n∑
i=1

[
yi − (a0 + a1xi + · · ·+ akxk

i)
]

= 0

∂σ2

∂a1
= −2

n∑
i=1

[
yi − (a0 + a1xi + · · ·+ akxk

i)
]
x = 0

∂σ2

∂ak
= −2

n∑
i=1

[
yi − (a0 + a1xi + · · ·+ akxk

i)
]
xk = 0

(11)

which can be rewritten in matrix form as
n

∑
x . . .

∑
xk∑

x
∑

x2 . . .
∑

xk+1

...
...

. . .
...∑

xk
∑

xk+1 . . .
∑

x2k

a0

a1

...
ak

 =

∑

y∑
xy
...∑
xky

 (12)

The left part of (12) is a Vandermonde matrix and it is accessible under this
name in the application. A Vandermonde matrix can be calculated in O(k n)

5 available from http://www.tc.umn.edu/˜ringx004/mapm-main.html, or type ’MAPM’ into
your favorite search engine. Special thanks to Michael C. Ring, who designed the library.

27

3.4 Core algorithms

time while the number of multiplications per term xy does not exceed log y,
minimizing the rounding error [PFTV92].

Actually, since all algorithms are slowed down by higher precision, the time
complexities have to be calculated as a function not of k but of k log d with d
the precision in bits or digits. This is neglected for the sake of readability.

The next step in the algorithm is to put the k × k Vandermonde matrix into
echelon or lower triangular form where all values below the diagonal are zero.
During the triangularization all operations on rows of the matrix are applied to
the same rows of the solution vector to keep the them consistent. The result:

1 v0,1 . . . v0,k

0 1 . . . v1,k

...
...

. . .
...

0 0 0 1

a0

a1

...
ak

 =

s0

s1

...
sk

 (13)

with vn,m the values at row n, column m after triangularization and sn the value
of the solution vector after triangularization. Triangularization by Gaussian
elimination can be done in O(k3) time. Once the matrix is in triangular form
we store it to calculate any polynomial of ≤ k degree at any precision in O(k2).
During the process of Gaussian elimination a vector is set aside by which the
determinant of any Vandermonde matrix ≤ k can be obtained in O(k), a time
saving byproduct which is important for mixture MDL.

The parameters of the r-degree polynomial can be read recursively from the
triangular matrix, starting with the highest parameter which is equal to sr of
the right hand solution vector. The recursive formula for parameter pr−s with
s ≤ r is

pr−s = sr−s −
s∑

i=1

[vr−s,r−i × pr−i] (14)

Rounding problems. Computation and triangularization of the Vandermonde
matrix has to be done at a precision high enough to safeguard against obvious
rounding errors but low enough to guarantee a fast performance. As a general
rule, a precision of 2k digits is used for k-degree matrixes, which works well for
every matrix of k ≤ 150. This is way above the 70–100 degrees recommended
for most operations because of slow performance beyond that point.

When we calculate a parameter vector of precision d < 2k it is of great impor-
tance where in the algorithm we round off. The choices are:

Late rounding. The vector is calculated at the 2k digit precision of the
matrix. Only the final result is rounded to d digits.

Early rounding. Each parameter is rounded instantly to d digits and then
used to calculate the other parameters.

28

Before reading on the interested reader is suggested to answer for him or herself
which method gives the better result.

I asked four experts in statistics and algorithms and all of them gave the wrong
answer. Late rounding does not give the better result. I implemented both
versions and found that early rounding reduces the number of digits needed to
achieve the same performance by a factor of 2. The error of a parameter vector
of d digits precision obtained with late rounding is roughly equal to that of a
vector of d/2 digits obtained with early rounding.

More than anything else, this example should make it clear that the size of an
actual implementation cannot be used to estimate the complexity of a model.

References

[Lor63] Edward N. Lorenz. Deterministic Nonperiodic Flow. Journal of the
Atmospheric Sciences, 20(2):130–148, 1963.

[Nan03] Volker Nannen. The Paradox of Overfitting. Master’s thesis, Rijks-
universiteit Groningen, the Netherlands, April 2003.

[PFTV92] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling.
Vandermonde Matrices and Toeplitz Matrices. In Numerical Recipes
in FORTRAN: The Art of Scientific Computing, pages 82–89. Cam-
bridge University Press, Cambridge, England, second edition, 1992.

[Rin01] Michael C. Ring. MAPM, A Portable Arbitrary Precision Math
Library in C. C/C++ Users Journal, November 2001.

[Tho93] René Thom. Structural Stability and Morphogenesis: An Outline of
a General Theory of Models. Addison-Wesley, Reading, MA, 1993.

29

Index

analysis, see generalization analysis
application, see Statistical Data

Viewer
arbitrary precision arithmetic, 27
autoregression, 14
axis, 12

color, 12
cross-validation, 5

how to use, 21

echelon matrix, 28
editor, 11, 25
experiment

simple, 5

file format, 25

Gaussian elimination, 27
generalization

analysis, 4
how to use, 21

complex analysis, 22

implementation, 24

learning problem, see process
least squares, 27
linear regression, 27
logistic map, 14
Lorenz attractor, 15

maginification, 13
manual, 11
MDL

mixture MDL
how to use, 21

two-part MDL
how to use, 20

menu, 25

noise
system, 13

open source, 24

penalty, 21
pendulum, 15
plot, 6, 12, 25, 26
polynomials, 27

object, 7
working with, 19

precision, 28
precision editor, 20
process, 4

object, 5, 13
project, 6, 25

Qt, 26

random generator, 13
regular expression, 17
rounding, 28

sample
drawing, 18
from file, 17
from polynomial, 19
from process, 18
merge, 19
object, 7, 17
split, 19

scale, 12
seed, 13
sinus wave, 5, 14
Statistical Data Viewer, 3

implementation, 24
manual, 11

step function, 16
support, 18

Thom map, 16
triangular matrix, 28
Trolltech, 26

Vandermonde matrix, 27
object, 24

XML, 25

zoom, 12

30

	Contents
	Experimental verification
	The Statistical Data Viewer
	A simple experiment

	Manual
	The editor
	The scientific plots
	Defining a process
	Taking a sample
	Working with polynomials
	The file format
	The Vandermonde object

	Some implementation details
	Program requirements
	Functional division
	The programming environment
	Core algorithms

	References
	Index

