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MDL — theory



1.1 the problem

The paradox of overfitting:

Complex models contain more
information on the training data

but less information on future data.



1.2

model selection

Machine learning uses models

to describe reality.



1.2 model selection

Models can be

e statistical distributions
e polynomials

e Markov chains

e neural networks

e decision trees

e etc.



1.2 model selection

This work uses polynomial models.

my, = pr(x) = ap + -+ + ap (1)
Polynomials are

e well understood
e used throughout mathematics

e suffer badly from overfitting



1.3 mean squared error

The mean squared error of a model m on a sample

s = {(z1,51) - (Tn, yn)} (2)

of size n is



1.3 mean squared error

The error on the training sample is called
training error.
The error on future samples is called

generalization error.

We want to minimize the generalization error.



1.4 an example of overfitting

An example of overfitting:
regression in the

two-dimensional plane



1.4 an example of overfitting

-0.2 [s.133

Continuous signal + noise,
300 point sample.
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1.4 an example of overfitting

6 degree polynomial, 0 = 13.8
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1.4 an example of overfitting

17 degree polynomial, 02 = 5.8
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1.4 an example of overfitting

43 degree polynomial, 02 = 1.5
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1.4 an example of overfitting

100 degree polynomial, o2 = 0.6
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1.4 an example of overfitting

3,000 point test sample. o2 = 10'2
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1.4 an example of overfitting
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Generalization error on this 3,000 point test sample.
02 =16, 17 degree: o2 = 8.6,

6 degree:
0% =2.7, 100 degree: o2 = 10'2.

43 degree:
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1.5 Minimum Description Length

Rissanens hypothesis:

Minimum Description Length

prevents overfitting.
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1.5 Minimum Description Length

MDL minimizes the code length

min |1(s|m) + U(m) (4)

This is a two-part code:
I(m) is the code length of the model

and [(s|m) is the code length of the data given the model.
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1.5 Minimum Description Length

We only look at the least square model per degree

mkin nlog 6y, + 1(m) (5)

Rissanen’s original estimation:

min [n log 6y, + klog \/ﬁ} (6)

This is too weak.
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1.5 Minimum Description Length

Mixture MDL is a modern version of MDL.
win [ ~log [ p(M = mu)p(shm) dmi | (7)
k my € My,

p(My, = my) is a prior distribution over models in M.

Barron & Liang provide a simple algorithm based on the
uniform prior (2002).
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Experimental Verification



2.1 the problem

Problems with experiments on model selection:

shortage of appropriate data

inefficient setup of experiments

insufficient visualization

few tangible results
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2.2 the solution

Solution:
The Statistical Data Viewer

an advanced tool
for statistical experiments.
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2.3

A simple experiment

A simple experiment:

the sinus wave
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A simple experiment
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A new project
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2.3

A simple experiment
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2.3

A simple experiment
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A simple experiment
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A simple experiment
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2.3 A simple experiment

(cross validation
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150 point sample. Optimum at 17 degrees.
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2.3 A simple experiment

(cross validation
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300 point sample. Optimum at 18 degrees.
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Results



3.1 achievements

Achievements:

e generic problem space (files, broad selection

of online signals, drawing by hand)

e graphical object oriented setup of experiments

(no scripting)
e graphics integrated into the control structure

e simple programming interfaces
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3.2

Conclusion

Conclusion for all experiments:

Rissanens original version usually overfits.
Mixture MDL can prevent overfitting.
smoothing is important for model selection.

Mixture MDL cannot deal with non-uniform support.
(but cross validation can do it!)

Mixture MDL can deal with different types of noise.
(i.i.d. assumption can be relaxed!)

The structure of a prediction graph contains valuable
information by itself and MDL can reproduce it.
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3.3 further research

Further research:

The structure of the generalization error

Other types of data

Other types of models

Improved interfaces
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