
Nominal Comparatives in Type-Logical Semantics

Volker Nannen

May 2000

Contents

1 Introduction 1
1.1 Recursion . 2
1.2 Ambiguity . 3

2 Numerical Quantification 3
2.1 Determination . 3
2.2 Plurals & Numerical Quantification 4
2.3 Determination . 5
2.4 The Category and Semantical Type of a Numerical Determiner . 6

3 Nominal Comparatives 6
3.1 The Relation between the Compared Sets 7
3.2 Monotonic Properties . 8

4 Analysis of more and than 8
4.1 Analysis of more . 9

4.1.1 more as a Complex Determiner 9
4.1.2 Category and Semantical Type of more 10
4.1.3 more than as a single expression 11

4.2 Analysis of than . 12
4.2.1 than with a Complete Statement 13
4.2.2 Incomplete than with a Verb 13
4.2.3 Incomplete than without a Verb 14

5 Conclusion 15

1 Introduction

This paper is about nominal comparatives in type-logical semantics. As an
underlying intention this paper also wants to show the need for more realistic
methods of sentence processing: recursion and constraints on ambiguity.
In type-logical semantics nominal comparatives are a tricky subject due to the
way the semantics of two compared sets are interwoven. This analysis of nominal
comparatives hopes to show that recursion is a computationally more realistic
method of interpretation. It is essential in solving complex problems that are
out of reach of non-recursive interpretation.

1

The present system of type-logical semantics is not prepared for recursion. The
way the interpretation is coded in a mixture of lambda calculus and first order
logic is unfit for further processing. Therefor I can’t give a working example of
recursion without significant changes to the semantical encoding.

1.1 Recursion

Ordinary semantics take a sentence as input and search for dependencies be-
tween the constituents. Then they combine the constituents in the best possible
way to produce an interpretation as output. This is a non-recursive method
where the output depends on the input only. It allows for a clean separation
between textual input and semantical output. Also it produces nice parsing
trees on paper.
But this method assumes that everything in a sentence is present at the same
time. As long as it yields an interpretation you are allowed to combine any
constituent with any other in any order. This is OK for writing where you eyes
can scan back and forth over the text. With speech it is unlikely because in
speech only a word at a time is really present. Previous words are buffered in a
so-called acoustic loop but that loop has limited capacity. Future input is not
available at all. Therefor interpretation of the present word can rely only on
the last words present in the acoustic loop and the semantics derived from past
input. This calls for a recursive interpretation that takes single words as input
and combines them with the output of previous interpretation, tearing down
the separation between input and output.

In his book “Type-Logical Semantics”1. Bob Carpenter associates a logical
category with every word and every constituent. This category is responsible
for combining a constituent with constituents of other categories in a predefined
order. Also every word and constituent has a lambda expression that represents
the actual meaning of the constituent. A constituent Con of category x/z/y
needs to be followed by some y and some z (in that order). When they are
found their meanings become the arguments to the lambda expression of Con.
The final output has category x. One of the strong features of this system is
that even incomplete sentences can be processed into semantical structures.

But it has two major disadvantages:

• In order to correctly interpret a constituent Con of a backward-looking
category y\z\x you must scan backward through the past input to find z.
And Con may be separated from z by an arbitrary long sequence y.

• A word at the end of a sentence can force you to reorder everything, taking
the previous constituents as arguments to its own lambda expression. In
this case all the previous interpretation turns obsolete.

Unless some evidence like immediate neighbourhood guarantees its availability
in the acoustic loop, interpretation should not depend on previous input. The
number of backward-looking slashes in a semantic type therefore should not
exceed a constant number, which stands for the most recent constituents. All
other dependencies on previous input should be replaced by recursion so that
instead of the textual input its semantic interpretation is used.
1 Bob Carpenter: Type-Logical Semantics, MIT-Press 1997

2

1.2 Ambiguity

Another issue is the multitude of categories and types that can be assigned
to the same word. Imagine a short sentence with four ambiguous words that
each has three interpretations. Theoretically this produces 34 = 81 possible
combinations. For longer sentences the number of possible combinations would
grow exponentially. In ordinary speech even a single ambiguity can throw a
listener out of track.
The best thing would be to avoid ambiguities whenever possible. And if they
really can’t be avoided they have to be eliminated early in the processing. If a
word has multiple interpretations, most of them should be canceled out imme-
diately as incompatible with the previous input. The rest should be eliminated
within the current sub-clause so that only a single interpretation emerges for
further combination. This ensures a realistic computational workload.

This means that categories and types may only differ

• with respect to backward-looking functors

• with respect to the previous interpretation they can combine with

• and with respect to the next two or three arguments they take according
to their forward-looking functors, i.e. the constituents that immediately
follow them in the sentence.

Any two interpretations that differ only in arguments they would take in a
later sub-clause should be avoided. They would produce different threads of
interpretation over a long period of time. And they produce an exponential
increase in workload.

2 Numerical Quantification

2.1 Determination

Nominal comparatives deal with quantification. The quantifiers as developed
by Bob Carpenter are not very useful to the analysis of nominal comparatives.
I first have to develope a stricter system of quantification:

For existential quantification like “a man” Carpenter uses the construction

some(λx . man(x)). (1)

This is logically equivalent to

∃x man(x). (2)

For determination like in “the man” he uses the ι-operator:

ι(man). (3)

But the behavior of ι is sometimes unregulated as Carpenter admits himself 2.
Determination makes an object unique in a given context. So instead of us-
ing a poorly defined quantifier like ι it is better to stick to the well defined
2 Type-Logical Semantics, page 98

3

logical quantifier ∃!3 ∃ is context dependent and Carpenter argues against this
quantifier that there is no theory that can deal with referential context4 . But
Discourse Representation Theory5 is a known example of a theory that can
model the context for every single expression of a discourse. In such a model
the use of logical ∃! is perfectly legitimate: “the man” should be translated as

∃!x man(x) (4)

saying that there is exactly one man in the given context. In logical formulas
the exclamation mark is a shortcut for writing

∃x (man(x) ∧ ∀ y (man(y) → y = x)). (5)

To be conform with the style of Carpenter who writes some(λx.man(x)) instead
of ∃x man(x) I will rewrite (4) as

some!(λx . man(x)). (6)

The only difference with (1) is the exclamation mark attached to some. The
exclamation mark is a useful translation for determination in other cases too.

2.2 Plurals & Numerical Quantification

Carpenter treats plurals as sets, not as numbers of individuals. He makes the
cardinality of a set available via a special operator: ‖Q‖ denotes the cardinality
of the set Q.
But this is not the only way to deal with plurals. When combined with a number
or with words like more or less they should better be described as a number of
individuals. This can be described as numerical quantification.

Numerical quantification is the numerical extension of existential quantification.
Any cardinal number is a numerical determiner. It defines the cardinality of a
set of objects. Just as

1 One apple ripens.

translates to
some (λx . P (x)) 6, (7)

so

2 Five apples ripen.

3 Some logicians call ∃ and ∀ quantifiers and others call them so only in combination with
the variable they bind. From a linguistic perspective it would be appropriate to call them
determiners and to call only the combination of determiner and bounded variable quantifier.
But since this is not established, I will call them quantifiers both with and without the
bounded variable.

4 page 99: “We have no theory of how such referential restrictions might be constrained
grammatically.”

5 Patrick Blackburn & Johan Bos: Discourse Representation Theory
6 P (x) ≡ apple(x) ∧ ripens(x)

4

should translate to

some

λx1 . some

λx2 some

λx5 .

 P (x1) ∧ P (x2)
∧ ... ∧ P (x5)
∧ x1 6= x2 6= ... 6= x5

(8)

where there are five distinct existentially quantified objects.

Analogous to (7) this expression can be written as

5(λx.P (x)) (9)

which means that there exist at least five distinct objects that satisfy P .

The general form for n objects is

n(λx.P (x)). (10)

2.3 Determination

Determination defines an object as unique in a given context. “the apple” allows
for exactly one apple in the context of discourse. The same is true for plurals.
When you say “the five apples”, there can’t be more than five apples in your
context of discourse. Since the exclamation mark was useful with ordinary
determination we will use it here too.

3 The apple ripens.

now translates to
∃!xP (x)7 (11)

which means that exactly one object satisfies P . It is a shortcut for writing

∃x (P (x) ∧ ∀ y (P (y) → y = x)). (12)

When the combines with a numerical determiner as in

4 The five apples ripen.

I want to use a numerical variant of ∃! to express it:

5! xP (x) (13)

which is short for

∃ x1 x2 ... x5

 P (x1) ∧ P (x2) ∧ ... ∧ P (x5)
∧ x1 6= x2 6= ... 6= x5

∧ ∀ y (P (y) → (y = x1 ∨ y = x2 ∨ ... ∨ y = x5))

 (14)

and means that there exist exactly 5 objects that satisfy P in the given context.
The exclamation mark carries the meaning of the determination. Don’t confuse
it with mathematical faculty. Mathematical 5! evaluates to 120. But this is a
7 P (x) ≡ apple(x) ∧ ripens(x)

5

logical expression where 5! evaluates to exactly five. A case of operator over-
loading.

Because analogous to Carpenter I wrote formula (11) as

some!(λx . P (x)) (15)

I will write the general form of formula (13) as

n!(λx . P (x)) (16)

meaning that there are exactly n objects that satisfy P in the given context.

2.4 The Category and Semantical Type of a Numerical
Determiner

To integrate numerical determiners (i.e. numbers) into type-logical semantics
they need a category and a semantic type. Category and semantic type of an
nd without the determiner the are respectively:

nd : (np ⇑ s)/n (17)

nd ≡ λPQ . nd(λx. P (x) ∧ Q(x)) (18)

In combination with the determiner the (which is of category np/n) this
becomes:

nd2 : (np/n)\((np ⇑ s)/n) (19)

nd2 ≡ λιPQ . nd!(λx. P (x) ∧ Q(x)) (20)

For convenience I use the letter ι for the word the but it is not Carpenters
ι-operator.

3 Nominal Comparatives

5 There are more bagels than I can count.

6 There are more bagels than I can count stars in the sky.

7 There are as many bagels as donuts.

8 The students ate fewer bagels than the professors.

Comparatives compare two sets of objects that are described by separate state-
ments. For clarity I will call the set combined with more, fewer or similar
keywords the referent and the set usually combined with than I will call the
standard. Most of the time I will pick out more and than and mention the
other keywords only when necessary.
When I speak of the complement of more I mean the referent that follows it.
But when I speak of the complement of than I mean the referent and the entire
statement that describes the referent.

6

If you would replace more by a number then the statement that describes the
referent would be a complete sentence. The complement of than can be a com-
plete sentence as well, as in [5]. But usually it is incomplete and its full content
has to be derived from the first statement. The standard itself doesn’t have to
be named explicitly [5, 6 and 8].

Any analysis of nominal comparatives has to address the following points:

• what is the relation between referent and standard?

• what are their monotonic properties?

• how are they quantified?

• what are the categories and semantic types of more and than?

• how to deal with incomplete complements of than?

Especially the last question is where we can put recursion to the test.

3.1 The Relation between the Compared Sets

9 Butter is cheaper than cheese.

Comparatives compare two sets of objects. But while adjectival comparatives
like in [9] compare the quality of two objects, nominal comparatives usually
compare their quantity, e.g. the amount of bagels eaten by the students is com-
pared to the amount eaten by the professors [8].

Both sorts of comparatives, nominal as well as adjectival, have two readings:

relational: as a statement on the relation between referent and standard. In
this case the statement tells you for example that one set has more mem-
bers or is of better quality than the other set. You don’t have to know
the exact properties of the sets and no calculation is necessary in order to
derive the correct meaning.

complex determiner: as a statement on the quality or quantity of the refer-
ent. In this case the quality or quantity of the standard is the measure for
the referent. The quality or quantity of the standard can be mentioned
explicitly or must be known from context.
In this sort of statement more fulfills the same function as a numerical
determiner. That’s why its called a complex determiner.

Take than in sentence [7]: relationally it tells you that there are bagels and
donuts and that the bagels are in the majority. As a complex determiner it
supposes you already now the amount of donuts (e.g. five in a given context)
and tells you that the amount of bagels is bigger (e.g. there are at least six
bagels).
When translated into logical formulas the two interpretations look essentially the
same. Carpenter translates adjective comparatives with the help of existential
quantifiers. This works for nominal comparatives too8:
8 here in plain words, for the extensive formulas and definitions of add and addsome look

at page 274 note 103 of his book

7

There exists some degree d, some amount e > 0 and some qual-
ity/quantity Q such that the standard does fulfill Q up to degree d
and the referent fulfills Q even up to degree d + e.

For nominal comparatives this can be written as

some

λd . some

λe . some

λQ .

 e > 0
∧ d (λx . stan(x))
∧ d + e (λy . ref(y))

 (21)

This is good for the relational reading where d only needs to be existentially
quantified. But for the complex determiner reading the true properties of the
standard might have to be taken from context. In this case you want an ab-
straction: λd.(...) where the context provides d as an argument. A high level
interpretation system could check whether the context provides that argument,
choose the proper reading and supply the argument. But apart from the bind-
ing of d everything else is equal and I think it sufficient to deal only with the
relational reading in this paper.

3.2 Monotonic Properties

Recall the sentences from page 6. There can be more bagels than donuts, there
can be fewer bagels than donuts and there can be as many bagels as donuts.
These statements are equivalent to the mathematical relations >, < and =.
They have the same monotonic properties:

• more than is upward monotonic in its first and downward monotonic in
the second set, just as mathematical >.

• fewer than is downward monotonic in its first and upward monotonic in
the second set, just as mathematical <.

• as many as looses its truth value if any set is replaced by a subset or a
superset, just as mathematical =.

more and fewer have inverse monotonicity properties and as many isn’t mono-
tonic at all, just as one expects from their mathematical counterparts. Nominal
comparatives have the same monotonicity properties as numbers in mathemat-
ical equations, an indication that they should be treated in a similar way.

4 Analysis of more and than

A nominal comparative can appear in three different general forms:

• only with more, the standard being supplied by the context:

10 Adam eats more apples.

• more than as a single expression:

11 Adam eats more than the five apples for breakfast.

8

• than introducing a new statement that defines the standard. This can be
further divided into

– statements that form a complete sentence:

12 Adam eats more apples than Eva eats peaches.

– statements that have a verb but miss a noun:

13 Adam eats more apples than Eva gave him.

– statements that miss a verb and other constituents:

14 Adam eats more apples than Eva.

Each of these appearances will be investigated.

4.1 Analysis of more

4.1.1 more as a Complex Determiner

15 Five apples cost two dollars.

16 More apples cost three dollars.

17 More butter costs three dollars.

18 *Five butter cost two dollars.

more is a complex determiner that says that the number of determined objects
is greater than some other number. Usually a noun combined with more can
also be combined with a numerical determiner and vice versa. But words like
butter form an exception to this rule. They are mass-terms describing some
uncountable quantity. In order to combine with a number they first have to
become the modifier of a countable unit like pound:

19 Five pounds of butter cost two dollars.

This leads to two different interpretations for more:

• as abstraction of a numerical quantifier, as in sentence [16]:

λ x . x apples cost three dollar.

• as abstraction of a numerical quantifier and the unit for the numerical
quantifier, as in [19]:

λ x λ unit . x unit of butter cost three dollar.

9

Because the difference completely depends on butter this ambiguity can best be
solved by agreement in number. English is rather an exception in the little use
it makes of agreement because most associations between constituents depend
on their position in the sentence. But other languages use agreement as a key
for associations. When type-logical semantics will be applied to such languages
agreement has to be incorporated into type-logical semantics anyway. butter
appears in singular number whereas words that combine with a number must
take a plural form9. So more of the first type should be made to agree with
plural forms and more of the second type should be made to agree with singular,
i.e. mass forms.
For the aim of this paper it is sufficient to deal only with the first type of more.
By adding the notion of a unit any analysis of more can easily be extended to
mass-terms.

4.1.2 Category and Semantical Type of more

20 Adam needs more apples for the new distillery project.

21 Adam needs more apples for the new distillery project than Eva.

more can appear in a sentence with and without than. Without it the standard
has to be taken from context. As explained on page 3 many words may pass
before it becomes clear whether than will supply a standard. Therefor more
should get an interpretation that can satisfy both cases. Otherwise the ambigu-
ity could stay unsolved for quite a while. The difference should be worked out
by than alone.

Like every determiner, more takes a noun at its right as an argument and
produces a quantifier with scope over the complete sentence. But here the
sentence in question isn’t complete. It still lacks the standard that has to be
supplied either by than or by the context. A determiner-like category like

∗more : (np ⇑ s)/n (22)

wouldn’t be correct because it implies that after taking scope over the sentence
we already reached category s when in fact we need to reach category s↑nd 10 .
The Moortgat-connective q serves us better. Something of category q(A,B, C)
acts as a C in the derivation of B, at which point it produces category A11.
This involves an operation which in computer programming is called dynamic
type casting. With this connective we can define the category and semantical
type of more as:

more : q(s ↑ nd, s, np)/n (23)

more ≡ λPQc . some (λn . (n > c ∧ n(λx . P (x) ∧ Q(x)))) (24)

9 Actually butter is a mass-term that is neither singular nor plural. In English a mass-term
is not recognized as a separate number, but other languages do recognize it. E.g. in Arabic
for the word fish you have a singular form, a plural (and dual) form and you have a special
form to speak of fish in general, like butter.

10 When than follows, category s/nd is also fine. But since that is not guaranteed the more
general s↑nd is better.

11 Type-Logical Semantics, page 355

10

The lambda term takes a noun P , a sentence Q and a number c as arguments.
It says that there exists some number n such that the number of objects that
satisfy P ∧Q is greater than c.

To give an example:

22 Adam sees more apples.

translates to

λc . some (λn . (n > c ∧ n(λx . apple(x) ∧ see(x)(adam)))) : s ↑ nd (25)

4.1.3 more than as a single expression

23 More than two professors ate apples.

24 More than the two professors ate apples.

In [23] and [24] than directly supplies the numerical determiner for the inter-
pretation of more.
[23] isn’t actually a comparative because nothing is compared here. The sentence
only states that the number of persons that ate apples is bigger than two.
[24] is a true comparative. There are two sets of persons. One set consists of
the only two persons in the current context of discourse who are known to have
eaten apples. All we know about the other set is that these persons ate apples
too and that there are more than two of them. Who they are and whether they
are part of the current context is undecided.
With more focus sensitive semantics the meaning of [24] would imply that the
two persons that have focus actually ate apples. But with our limited logical
tools this is not possible and we can’t express this implication. The meaning of
the second sentence becomes the same as of the first sentence: the number of
persons that ate apples is bigger than two.

more and than form a unity with no word standing between them and separating
them. To combine them into a logical unity one of them should get a category
that consumes the category of the other one and produces a combined category.
Which one consumes which one and what the original but consumed category
was is irrelevant.
Given the fact that we already assigned a category and semantic type to more,
for the interpretation of [23] than can take the following category and semantic
type:

than1 : (q(s ↑ nd, s, np)/n)\((np ⇑ s)/n/nd) (26)

than1 ≡ λmcPQ . some (λn . (n > c ∧ n(λx . P (x) ∧ Q(x)))) (27)

the first argument m of the semantic type stands for the word more that is
simply consumed12 to produce the combined category and semantic type:
12 consumed doesn’t mean of no effect. more standing to the left of than served to select the

right category and semantic type for than, thus leading to the combined category and
semantic type.

11

more than : (np ⇑ s)/n/nd (28)

more than ≡ λcPQ . some (λn . (n > c ∧ n(λx . P (x) ∧ Q(x)))) (29)

The semantic type takes a number c, a noun P and a sentence Q as arguments.
The final meaning is that some number n exists that is bigger than c and that
there are n objects that satisfy both P and Q. With this analysis sentence [23]
translates to

some (λn . (n > 2 ∧ n(λx . person(x) ∧ eat(apple)(x)): s (30)

For sentence [24] the category and semantic type have to take care of the. But
since with our limited tools we can’t make use of the contextual implications
of the, this argument is consumed without effect and the result is identical to a
sentence without this determination:

more than : (np ⇑ s)/n/nd/ι (31)

more than ≡ λιcPQ . some (λn . (n > c ∧ n(λx . P (x) ∧ Q(x)))) (32)

4.2 Analysis of than

25 Adam sees more apples than Eva sees peaches.

26 Adam sees more apples than Eva.

A numerical determiner is missing in the quantification of the complement of
more. The task of than is to provide this numerical determiner. In [25] and
[26] than introduces a new statement after the statement containing more is
completed. This statement defines the standard, the set of objects the referent
is compared to. In [25] the peaches Eva sees are compared to the apples Adam
sees and in [26] the apples Eva sees are compared to the apples Adam sees.
Before we get lost in detail it is helpful to have a general idea of what we want.
In order to provide more with the numerical determiner, we expect than to be
of general category and semantic type

than2 : (s ↑ nd)\s/(s ↑ nd) (33)

than2 ≡ λPQ . some(λn . P (n) ∧ Q(n)) (34)

meaning that there exists some number n that satisfies the two arguments of
than, i.e. a number that is equal to the standard and smaller than the referent.

12

4.2.1 than with a Complete Statement

To begin with I will first consider cases where the complement of than is com-
plete. If the complement of than in [25] was a full sentence, peaches would be
existentially quantified and take scope over the whole sub-clause:

some(λx . peach(x) ∧ see(x)(Eva)) : s (35)

To convert this into category s↑nd we have to reinterpret the sub-clause. In
English any existentially quantified plural noun can be considered as missing a
numerical quantifier and hence we can reinterpret “Eva sees peaches” as “Eva
sees the n peaches” with “the n” missing. “the n” is of category nd and when it
is missing we get

λn . n!(λx . peach(x) ∧ see(x)(Eva)) : s ↑ nd (36)

This is true iff the number n supplied in (34) is equal to the number of peaches
seen by Eva. The full interpretation of [25] is now

some

(
λc .

(
some(λn . n > c ∧ n(λx . apple(x) ∧ see(x)(Adam)))

∧ c!(λy . peach(y) ∧ see(y)(Eva))

))
(37)

In fact any sentence with an existentially quantified plural noun can take the
category s↑nd. This can lead to ambiguity when a numerical quantifier could
be considered absent at different places in a sentence. Is the number of apples
in the following sentence more than the number of children or more than the
number of professors?

27 Adam sees more apples than professors see children.

some

(
λc.

(
c!(λx.(child(x) ∧ some(λy . prof(y) ∧ see(x)(y)))) ∧
some(λn.(n > c ∧ n(λz. apple(z) ∧ see(z)(adam))))

))
(38)

some

(
λc.

(
c!(λx.(prof(x) ∧ some(λy . child(y) ∧ see(y)(x)))) ∧
some(λn.(n > c ∧ n(λz. apple(z) ∧ see(z)(adam))))

))
(39)

4.2.2 Incomplete than with a Verb

In the optimal case the complement of than is a full grammatical sentence that
can be reinterpreted as of category s↑nd. But most of the time the complement
ofthan is not a full sentence. It may lack the verb with and without its modifiers,
the subject and any object. All these have to be derived from the first statement
before the complement of than can be fully interpreted.
Generally there is a division between complements of than where the verb is
missing and complements of than where the verb is present.

28 Eva found more apples than usually grow on trees.

29 Eva found more apples than Adam will eat.

13

When a verb is present, only one noun may may be missing in the statement
complementing than. This noun must always be identified with the complement
of more, independently of its thematic role. When complete, the second state-
ment was of category s↑nd. Now with the noun missing it must be of category
(s↑nd)↑n.
Since more and its complement can appear at virtually any position in the first
statement, there is no way for than to extract the missing noun from the first
statement by some back-looking category. From the previous section we know
that when than was encountered, the interpretation of the first statement must
have yielded something of type

λc . some (λn . (n > c ∧ n(λx . P (x) ∧ Q(x)))): s ↑ nd (40)

where P stands for the noun complement of more and Q stands for the first
statement. A simple recursive solution would be to let than unify the missing
noun with P .
But there is a conventional solution, although it is not very realistic because
it introduces some ambiguity for more that can’t be solved before the first
statement is completed: more can be given a category and semantic type such
that it applies P to than and its complement. than in this case does not play
an active role. It only serves to separate the two statements and to trigger the
selection of the right category for more13. I give it the dummy-category τ :

more2 : q(s/((s ↑ nd) ↑ n)/τ , s , np)/n (41)

more2 ≡ λPQτR . some

λc . some

λn .

 R(P)(c) ∧
n > c ∧

n(λy .P (y) ∧Q(y))

 (42)

Where R is the complement of than and of category (s↑nd)↑n. Compare (36) to
see that c has to exactly match the quantity of the standard in order to satisfy
R. (29) now translates to

some

λc . some

λn .

 c!(λx . apple(x) ∧ eat(x)(adam)) ∧
n > c ∧

n(λy .apple(y) ∧ find(y)(eva))

 (43)

4.2.3 Incomplete than without a Verb

30 Today Adam saw more apples on the tree than Eva.

31 Today Adam saw more apples on the tree than yesterday.

32 Today Adam saw more apples on the tree than peaches.

33 Today Adam saw more apples on the tree than in the basket.

34 Today Adam saw more apples on the tree than Eva yesterday peaches.

13 Under the assumption that ambiguities produce exponentially growing workload, to help
choosing the right category for a word is an important semantic task by itself.

14

35 Adam gave Seth more apples than Eva peaches. (ambiguous)

36 Adam gave Seth more apples than Eva. (ambiguous)

When the verb is missing it seems a mess: anything present in the first statement
can be omitted or replaced in the second statement.
Basically the second statement is a copy of the first one with variations to
distinguish the standard from the referent. If a noun in the second statement
has the same thematic role as the referent in the first statement, it becomes the
new standard. Otherwise standard and referent are occupied by the same noun.
In [31] the only difference between the referent apples and the standard apples
is the time Adam saw them. What really happens in the brain could be any
variation of the following scenario:

Imagine the interpretation of the first statement as some structure in the brain
where every constituent is linked to the verb. And every constituent has its
unique place according to its thematic role.
When than is heard, this structure is copied. Next a number of constituents
is heard, each with a thematic role. One is a subject, one an object and one
describes time or place of action. In the mental structure each one is written on
the unique place that is ascribed to its thematic role, overwriting the constituent
that originally occupied that place.

There are many variations on which and how many constituents are to be re-
placed. And it has to be guaranteed that the thematic roles of the constituents
in the than-statement match with those in the more-statement. This is unsolv-
able even with such generic categories as

and : A\A/A14 (44)

where variables stand for unknown categories. In this case not only the cate-
gories are unknown but also the number of arguments and the order in which
they appear in the first statement.

5 Conclusion

The last example showed the limit of the present type-logical semantics. To me
the natural solution is to make use of the semantic output of the first state-
ment in order to interpret the second statement. Admittedly the logical tools
used so far are unfit for such a task. But since they were never designed to
allow for further processing of the output, this is no argument against recursive
interpretation.

Type-logical semantics is still under development. If recursion is to be integrated
into type-logical semantics we have to find a better way of coding the semantic
output. A problem with the current notation is that as soon as one constituent
has been applied to another one the two have become inseparable. Lambda
calculus offers no tools to divide them again. There is no way to extract from a
structure like P (x) either the P or the x.
14 Type-Logical Semantics, page 180:

and takes two variable but identical categories as arguments and produces an output of
the same category.

15

16

	Introduction
	Recursion
	Ambiguity

	Numerical Quantification
	Determination
	Plurals & Numerical Quantification
	Determination
	The Category and Semantical Type of a Numerical Determiner

	Nominal Comparatives
	The Relation between the Compared Sets
	Monotonic Properties

	Analysis of more and than
	Analysis of more
	more as a Complex Determiner
	Category and Semantical Type of more
	more than as a single expression

	Analysis of than
	than with a Complete Statement
	Incomplete than with a Verb
	Incomplete than without a Verb

	Conclusion

