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A STUDY OF PARAMETER RELEVANCE IN

EVOLUTIONARY ALGORITHMS

Abstract

We present an empirical study on the impact of different design choices on the
performance of an evolutionary algorithm (EA). Four EA components are consi-
dered—parent selection, survivor selection, recombination and mutation—and for
each component we study the impact of choosing the right operator and of tuning
its free parameter(s). We tune 174 different combinations of EA operators to 4 dif-
ferent classes of fitness landscapes and measure the cost of tuning. We find that
components differ greatly in importance. Typically the choice of operator for parent
selection has the greatest impact, and mutation needs the most tuning. Regarding
individual EAs however, the impact of design choices for one component depends
on the choices for other components, as well as on the available amount of resources
for tuning.

3.1 Introduction

Evolutionary Algorithms (EA) form a class of search methods that work by incrementally
improving the quality of a set of candidate solutions by variation and selection (Eiben
and Smith, 2003). The most important components of EAs are thus recombination and
mutation (umbrella term: variation), parent selection, and survivor selection. To ob-
tain a working EA, each component needs to be instantiated by a specific operator, e.g.,
the one-point crossover operator for the recombination component. Furthermore, an
EA has parameters that need to be instantiated by a specific parameter value, e.g., 0.5

This chapter is an extension of Nannen et al. (2008).
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52 3. A Study of Parameter Relevance in Evolutionary Algorithms

for the crossover rate. In this paper we maintain the distinction between components
and parameters and say that the instantiation of EA components by concrete operators
specifies a particular EA, e.g., uniform crossover, bit-flip mutation, random parent se-
lection and k-tournament survivor selection. Further details regarding the parameters
do not lead to a different EA, only to variants of the one defined by the operators.1 A
complete EA design includes the definition of an EA (operators for its components) and
the specification of a particular variant of it (values for its parameters).

Setting EA parameters is commonly divided into two cases, parameter tuning and
parameter control (Eiben et al., 1999, 2007). In case of parameter control the parameter
values are changing during an EA run. This requires initial parameter values and suit-
able control strategies, which in turn can be deterministic, adaptive or self-adaptive.
The problem of parameter tuning is hard because for any given application there is a
large number of options, but only little knowledge about the effect of EA parameters on
EA performance. EA users mostly rely on conventions (mutation rate should be low),
ad hoc choices (why not use uniform crossover), and experimental comparisons on a
limited scale (testing combinations of three different crossover rates and three different
mutation rates). Here we address the problem of parameter tuning. Our main research
questions are:

1. How does the choice of operator for each component contribute to EA perfor-
mance? To this end we compare the absolute performance achieved with different
combinations of operators.

2. The parameters of which EA component need the most tuning? For this question
we measure the amount of information needed to tune the free parameter(s) of
each operator (e.g., crossover rate or tournament size).

For a systematic exploration of the space of EA configurations we use exhaustive
search for the combination of operators and Relevance Estimation and Value Calibra-
tion (REVAC) to tune the free (numeric) parameters. REVAC is an Estimation of Distribu-
tion Algorithm (Mühlenbein and Höns, 2005) that tunes an EA by optimizing marginal
probability distributions over the free parameters, see Section 2. Starting from a set of
uniform distributions and an initial drawing of 100 vectors of random parameter values,
REVAC iteratively generates new marginal distributions of increasing expected EA per-
formance by drawing a new vector of parameter values from the current distributions,
evaluating the vector by measuring the performance of the EA with these values, up-

dating all marginal distributions based on this evaluation, and smoothing the updated
distributions. Smoothing is a unique feature of REVAC that forces all marginal distri-
butions to approach the maximum Shannon entropy distribution for a given EA perfor-
mance. This maximized Shannon entropy is independent from the computational cost
of any particular tuning method and can be used as a general estimator of the minimum
amount of information required to reach a certain level of EA performance. Hence, it can
be regarded as a general indicator of how difficult it is to tune a certain EA parameter,
and how relevant it is to overall EA performance.

1Alternatively, components & operators could also be called symbolic parameters & values, and we could
say these values only define different EA variants.
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Related work includes the general discussion of EA design (Czarn et al., 2004) and pa-
rameter setting (Lobo et al., 2007), in particular within parameter tuning as defined by
Eiben et al. (1999), Birattari (2004), and Eiben et al. (2007). Throughout the relevant lit-
erature we find that the cost of tuning parameters is largely ignored. Notable exceptions
are the theoretical considerations of Oliver et al. (1987) and Goldberg (1989), as well
as the systematic parameter sweeps of Jong (1975), Schaffer et al. (1989), and Samples
et al. (2005) and the statistical analysis of parameters by François and Lavergne (2001).
In the general field of experimental design, a paradigm shift that emphasizes a low cost
of tuning over the performance of optimal parameter values was due to Taguchi and Wu
(1980). In our field, Freisleben and Hartfelder (1993) propose a meta-GA approach in
which both EA components and EA parameters are tuned and shows the importance of
the right choice for the GA operators. Samples et al. (2005) show how parameter sweeps
can be used for robustness and correlation analysis.

3.2 Experimental setup

For a clear discussion we distinguish three different layers in the analysis of an EA:
the problem/application (here: fitness landscapes created by a generator), the prob-
lem solver (here: an EA), and the method for tuning the problem solver (here: REVAC).
For an unbiased study we use independent software implementations for each layer and
combine them through simple interfaces. For the problem layer we use a generator of
real-valued fitness landscapes that are formed by the max-set of Gaussian curves in high
dimensional Cartesian spaces (Gallagher and Yuan, 2006). Where a Gaussian mixture
model takes the average of several Gaussians, a max-set takes their enveloping maxi-
mum, giving full control over the location and height of all maxima. For the implemen-
tation we followed Rudolph (1992) on rotated high dimensional Gaussians, and used 10
dimensions, 100 Gaussians, and the same distributions over height, location, and rota-
tion of these Gaussians as specified in the exemplary problem sets 1–4 of Gallagher and
Yuan (2006). These sets offer an increasing amount of exploitable structure to the EA. Set
1 has the least structure, with peaks of different height scattered at random, while set 4 is
the most structured, with peaks that get higher the closer they get to the origin. For each
set, different landscapes are created by passing a different random seed to the genera-
tor. Initialization of all EA populations is uniform random in the domain of the fitness
landscapes. The optimal fitness value is 1 on each problem instance and the condition
for successful termination is defined as “fitness > 0.9999 or 10,000 fitness evaluations".

For the EAs we use the Evolutionary Computation toolkit in Java (ECJ) (Luke), which
allows the specification of a fully implemented EA through a simple parameter file, in-
cluding the choice of operator for each component and the values for the free param-
eters. The ECJ offers several operators for each EA component, cf. Table 3.1. For any
given EA, the population size parameter is always present. Most operators have zero or
one free parameter. One operator has 2 free parameters—Gaussian(σ, p) with param-
eters σ for step size and p for mutation probability, which takes the value 1 in case of
Gaussian(σ,1). Due to technical details of the ECJ, not all combinations of operators are
possible. For example, neither fitness proportional nor best selection as parent selec-
tion can be combined with tournament selection as survivor selection. In total we have
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Table 3.1: EA components, operators, and parameters used in this study

Component Operator Parameter(s)
population size µ

parent tournament parent tournament size
selection best selection number n of best

fitness proportional -
random -

survivor generational -
selection tournament survivor tournament size

(µ,λ) λ

(µ+λ) λ

random -
recombination none -

one-point crossover probability
two-point crossover probability
uniform crossover probability

mutation reset (random uniform) mutation probability
Gaussian(σ,1) step size
Gaussian(σ, p) step size, mutation probability

Notes. We follow the naming convention of the ECJ. Arguably, (µ,λ) and (µ+λ) define
both parent and survivor selection. Here we classify them under survivor selection be-
cause that is what the parameter λ influences.

174 combinations of operators, of which 6 with 2, 33 with 3, 65 with 4, 55 with 5, and 15
with 6 free parameters.

The performance of an EA with a given set of parameter values is measured in three
different ways: SR (Success Rate, percentage of runs with fitness > 0.9999), MBF (Mean
Best Fitness of all runs), and AES (Average number of Evaluations to Solution of success-
ful runs; undefined when SR = 0). Each EA is tuned 5 times on each of the 4 problem
sets. During each tuning session on a given set REVAC generates 1,000 different vec-
tors of parameter values. Each vector of values is written to the ECJ configuration file,
together with the specification of the operators and the problem generator. The result-
ing EA is evaluated on 10 different instances of the problem set, generated by different
random seeds.

For each REVAC tuning session and each EA, the best performance after n evalua-
tions is the best performance measured after evaluating n vectors of parameter values.
The average best performance after n evaluations is averaged over multiple tuning ses-
sions on the same EA. We define near best performance as the average best performance
after 1,000 evaluations minus 5%2. If n is the lowest number of vectors for which the av-
erage best performance after n evaluations exceeds this value, then we say that REVAC

2In case of MBF this is calculated after subtracting a performance level of .5, a level that is reached by any
reasonably sized population upon random uniform initialization. The maximum possible near best MBF is
therefore .975
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needs n evaluations to tune the EA to near best performance. Section 3.3 uses this to
study the impact of choosing an operator for each component.

In Section 3.4 we analyze the cost and benefits of tuning per EA component. REVAC
continuously maximizes the Shannon entropy of the marginal distributions that it op-
timizes during a tuning session. This maximized Shannon entropy provides a generic
information-theoretic measure of the minimum amount of information needed per pa-
rameter to reach a given performance level. The differential Shannon entropy h of a
probability density function D over the continuous interval [a,b] is commonly defined
as

h(D[a,b]) =−

∫b

a
D(x) log2 D(x)d x. (3.1)

The sharper the peaks of a probability density function, the lower its Shannon entropy.
In order to compare the entropy of distributions that are defined over different param-
eter intervals in a meaningful way, we normalize all parameter intervals to the interval
[0,1] before calculating the Shannon entropy. In this way the initial uniform distribu-
tion has a Shannon entropy of zero, and any other distribution has a negative Shannon
entropy h(D[0,1]) < 0.

3.3 How does the choice of operator per component contribute to

performance?

Figure 3.1–3.8 on page 56–61 show the average near best fitness in AES and MBF and the
tuning cost in number of evaluations of REVAC needed to reach this fitness. Results in
AES are based on those EAs with SR > 0 for which the AES could be calculated. Depend-
ing on the problem set, 60–70 EAs could be tuned to terminate with success. Results on
the MBF are based on all 174 EAs. Each figure contains four scatter plots that show the
performance in AES or MBF after tuning, and the cost of tuning, averaged over 5 tuning
sessions per EA. The y-axes show the near best performance in AES. The x-axes show
the number of REVAC evaluations needed to tune the EA to this performance. Each of
the four plots of a figure shows the same EAs but labels them according to the opera-
tor choice for a different component. To read the full specification of an EA, one needs
to look at the same location in all four plots. Under each AES figure a table (i.e., Table
3.2–3.5) shows the average performance on the same set that was achieved with each
operator of each component. The table reports the average success rate, the near best
performance, and the cost of finding it, for AES and for MBF respectively. Each value is
averaged over all those EAs that use this operator and, in case of AES, terminated with
success.

The choice of operator for the parent selection component has the strongest effect
on EA performance. The 16 EAs that are clustered together in the lower left of each plot
of Figure 3.1–3.4 display the best performance and the lowest number of evaluations
needed to reach this performance. These EAs all use tournament selection for parent se-
lection, either tournament selection or random selection for survivor selection, any re-
combination operator, and either Gaussian(σ, p) or Gaussian(σ,1) for mutation. On the
other hand, those EAs that have the never terminate with success and generally reach
only a minimum MBF (see Figure 3.5–3.8) share one common feature, namely a lack of
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Figure 3.1: Near best performance in AES on set 1 against cost of tuning

Table 3.2: Average near best performance on set 1, per operator

Component Operator Success rate AES Cost MBF Cost
parent tournament 1 3484 344 0.87 281
selection best select. 1 5782 556 0.89 279

fitness pro. 0.64 6582 532 0.87 219
random 0.54 5611 517 0.77 388

survivor generational 0.5 4224 426 0.8 367
selection tournament 1 3320 318 0.87 324

(µ , λ) 0.97 6259 546 0.89 209
(µ+λ) 0.97 6072 550 0.9 210
random 0.5 2175 244 0.74 444

recombi- none 0.67 4798 343 0.82 328
nation one-point 0.79 5549 548 0.84 289

two-point 0.81 4727 412 0.85 273
uniform 0.81 4732 479 0.85 324

mutation reset 0.78 7168 729 0.83 309
Gauss.(σ,1) 0.78 5001 368 0.85 306
Gauss.(σ, p) 0.79 2785 285 0.85 287
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Figure 3.2: Near best performance in AES on set 2 against cost of tuning

Table 3.3: Average near best performance on set 2, per operator

Component Operator Success rate AES Cost MBF Cost
parent tournament 1 3559 325 0.91 265
selection best select. 1 5870 654 0.92 157

fitness pro. 0.61 6042 590 0.91 162
random 0.54 5357 479 0.8 324

survivor generational 0.5 4708 427 0.83 248
selection tournament 1 3524 181 0.92 255

(µ , λ) 0.92 5792 595 0.93 201
(µ+λ) 1 5643 663 0.93 157
random 0.5 2529 185 0.77 431

recombi- none 0.67 5046 322 0.85 275
nation one-point 0.77 5251 523 0.88 245

two-point 0.81 4705 515 0.89 232
uniform 0.81 4559 468 0.89 233

mutation reset 0.76 7259 689 0.87 239
Gauss.(σ,1) 0.78 4620 430 0.88 232
Gauss.(σ, p) 0.79 2810 313 0.88 260
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Figure 3.3: Near best performance in AES on set 3 against cost of tuning

Table 3.4: Average near best performance on set 3, per operator

Component Operator Success rate AES Cost MBF Cost
parent tournament 1 3526 365 0.92 253
selection best select. 1 5636 593 0.93 203

fitness pro. 0.64 6085 560 0.91 192
random 0.54 5329 529 0.8 325

survivor generational 0.5 4622 397 0.84 263
selection tournament 1 3395 266 0.93 242

(µ , λ) 0.95 5856 612 0.94 225
(µ+λ) 1 5525 621 0.94 176
random 0.5 2451 250 0.77 424

recombi- none 0.7 5149 342 0.85 323
nation one-point 0.77 5233 522 0.89 245

two-point 0.81 4590 502 0.89 237
uniform 0.81 4442 504 0.89 238

mutation reset 0.76 7283 656 0.87 253
Gauss.(σ,1) 0.79 4532 493 0.89 260
Gauss.(σ, p) 0.79 2719 309 0.89 250
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Figure 3.4: Near best performance in AES on set 4 against cost of tuning

Table 3.5: Average near best performance on set 4, per operator

Component Operator Success rate AES Cost MBF Cost
parent tournament 0.96 5078 408 0.89 319
selection best select. 0.8 6782 649 0.89 249

fitness pro. 0.47 6778 643 0.88 266
random 0.43 6872 480 0.77 398

survivor generational 0.5 6554 493 0.8 353
selection tournament 0.92 5370 298 0.9 313

(µ , λ) 0.74 6660 631 0.9 265
(µ+λ) 0.74 6321 663 0.9 271
random 0.5 4019 235 0.73 434

recombi- none 0.6 6446 375 0.81 390
nation one-point 0.65 6535 490 0.85 311

two-point 0.69 5601 545 0.86 283
uniform 0.71 5785 554 0.86 325

mutation reset 0.45 9250 630 0.84 323
Gauss.(σ,1) 0.76 5890 514 0.86 301
Gauss.(σ, p) 0.79 4358 430 0.86 338
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Figure 3.5: Near best performance in AES on set 1 against cost of tuning
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Figure 3.6: Near best performance in AES on set 2 against cost of tuning
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Figure 3.7: Near best performance in AES on set 3 against cost of tuning
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Figure 3.8: Near best performance in AES on set 4 against cost of tuning
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Figure 3.9: Impact of recombination operators on AES and cost of tuning

selection pressure. In particular, EAs with random or fitness proportional selection for
parent selection do not terminate with success unless combined with strong survivor
selection pressure.

Of the two variation components, the choice of mutation operator has the stronger
effect on EA performance, as can be seen from the differences in Table 3.2–3.5. On
all our problem sets reset mutation is the worst mutation operator, and non-standard
Gaussian(σ, p) mutation is superior to Gaussian(σ,1) both in terms of performance and
in terms of cost of tuning. The latter may come as a surprise, since the additional free
parameter for mutation probability increases the parameter search space. We conclude
that the tuning cost of different operators is not additive, and that the tuning cost of an
operator can only be evaluated in the context of the overall EA composition.

While choosing the recombination operator has the least effect on EA performance,
it demonstrates how the choice of operator can depend on the available resources for
tuning. Figure 3.9 enlarges the lower left corner of Figure 3.4c, overlaid by four graphs
that show the evolution of the average performance of 4 EAs with tournament selec-
tion for both parent and survivor selection, Gaussian(σ, p) mutation, and four different
recombination operators. 20 tuning sessions were used for each graph. While the tun-
able recombination operator eventually outperform no recombination, an EA with no
recombination consistently outperforms EAs with tunable recombination after about
30–40 parameter vectors have been evaluated, and it has at least average performance
for anything under 100 evaluated parameter vectors. We observed this phenomenon
over a wide range of operator choices for the other components and over all 4 prob-
lem sets. All in all, for recombination, the choice of operator can clearly depend on the
amount of effort that can be invested in tuning.

3.4 Which EA component needs the most tuning?

The previous section related the performance of the near best parameter vector to the
number of REVAC evaluations needed to find this vector and to achieve this perfor-
mance. This section takes a rather unconventional approach based on the expected
performance when parameter values are drawn from a probability distribution, namely
those created by REVAC after 500 evaluations. To calculate the performance gain achieved
by tuning, this expected performance is compared to the expected EA performance
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Figure 3.11: Correlation between performance gain and the sum of the Shannon entropy
of all marginal distributions

when parameter values are drawn from the uniform distribution. All results are aver-
aged over 5 REVAC tuning sessions of an EA on each of the 4 problem sets, 20 tuning
sessions per EA. In order to extend our analysis to all 174 EAs, we use the Mean Best
Fitness that an EA achieves at termination (successful or not), rather than the AES.

Shannon entropy measures the amount of information that a probability distribu-
tion provides on its random values. By definition, the lower the Shannon entropy of the
maximum entropy distribution that achieves a given expected EA performance, the finer
the parameter value has to be tuned in order to achieve that expected performance. This
is demonstrated in Figure 3.10. The scatter plot shows the correlation between the Shan-
non entropy of the marginal distribution over the mutation probability and the standard
deviation of the best found parameter values. The x-axis shows the Shannon entropy as
estimated by REVAC. The y-axis shows the average (over 4 sets) of the standard deviation
of the 5 best values found during the 5 REVAC tuning sessions on each set. The corre-
lation coefficient is 0.9 and the p-value (the probability to observe this or a stronger
correlation when the true coefficient is zero) virtually zero. The point here is that if the
maximum entropy distribution has a higher Shannon entropy, there is less certainty on
the precise parameter value, something that can otherwise be expensive to assess.

Figure 3.11 shows a clear correlation between a gain in expected MBF and the Shan-
non entropy of the maximum entropy distributions that REVAC has estimated after 500
evaluations. The x-axis shows the average performance gain in percent. The y-axis
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Table 3.6: Entropy per EA component, averaged over all EAs

Component & population size Correlation with MBF gain Shannon entropy

correlation p-value max mean min
1) population size -0.4 0 0 -0.9 -1.7
2) parent selection 0.2 0.1 -0.1 -0.6 -3.3
3) survivor selection -0.1 0.3 0 -0.7 -1.4
4) recombination -0.4 0 0 -0.2 -1.2
5) mutation -0.6 0 -0.1 -1.2 -4.5

Entire EA -0.8 0 -0.2 -2.9 -5.1
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Figure 3.12: Mean Shannon entropy per component & population size

shows the Shannon entropy of the estimated distributions, summed over all tuneable
parameters of the EA. Note that no EA lies above the main diagonal, which shows that
there is a minimum information cost for every percent point of gain in expected perfor-
mance, regardless of the EA specifications. Of those EAs that lie significantly below the
diagonal, most use tournament selection for both parent and survivor selection. By 500
REVAC evaluations, their MBF had long been maximized. Further tuning only improved
their AES, distorting their performance gain to entropy ratio.

Does the strong correlation between total Shannon entropy and the gain in expected
performance carry over to individual EA components? The first two numeric columns
of Table 3.6 show the correlation coefficient for each component and its p-value, i.e., the
probability to observe this or a stronger correlation coefficient if the true coefficient is
zero. Only EAs with a tunable operator were considered for the respective component.
The correlation is generally weak, in particular for selection. In other words, the ques-
tion which component needs tuning in order to improve the performance of a particular
EA depends much on the EA in question.

With respect to the average Shannon entropy per component, we see that not all
components require the same amount of tuning. The right numeric columns in Table 3.6
show the maximum, mean, and minimum Shannon entropy that we observed for each
component (and the population size) when instantiated with an operator that needs
tuning. The bar diagram of Figure 3.12 allows a visual comparison of this average mean
Shannon entropy. Such a skewed distribution of a need for tuning is commonly known
as sparcity of effects.

Typically, mutation requires the highest amount of tuning, and recombination the
least. This rule has many exceptions, as can be concluded from the low correlation co-
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efficients. While the relative order of Shannon entropy per component depends much
on the EA in question, consistent patterns can be detected for small groups of EAs. Take
for example the two EAs with tournament selection for both parent and survivor selec-
tion, Gaussian(σ,1) mutation and either one-point, two-point or uniform crossover. We
find that the Shannon entropy for mutation has the unusually high Shannon entropy
of around -.2, while the parent selection operator has a low Shannon entropy below -3.
When combining the same selection operators with other recombination or mutation
operators, we find that the Shannon entropy for parent selection is back to normal lev-
els, while it is still comparatively high for mutation. Another example is recombination,
which only exhibits a low Shannon entropy for uniform crossover in combination with
either (µ+λ), or (µ,λ). Such irregular patterns are consistent over different problem sets
and seem to be inherent to specific combinations of EA components.

3.5 Conclusions

This chapter introduces a novel approach to EA design that emphasizes the cost of tun-
ing. To understand how this cost depends on the choice of operator per EA component,
we combined exhaustive search over operators with REVAC for tuning their parameters.
Our experiments revealed a number of notable insights.

Our tests confirmed the common wisdom that the choice of operator for one EA
component depends on the choice of operator for the other components. Of all compo-
nents, the choice of operator for parent selection has the biggest impact on EA perfor-
mance. Furthermore, EAs differ greatly in the amount of tuning needed to reach a given
performance, and this tuning cost depends on the overall setup of the EA, rather than
the number of free parameters. With regard to recombination, we found that the best
EA setup depends on the time and effort one can permit to tune the EA.

To measure the need for tuning per component we use the Shannon entropy of
maximum entropy distributions as estimated by REVAC, which expresses the minimum
amount of information that is needed to achieve a given expected EA performance. It
is a generic information-theoretic measure that is independent of any particular tuning
algorithm. Inspired by theoretical considerations, it was validated by a strong correla-
tion with the standard deviation of best solutions found during multiple tuning sessions.
Based on this measure we observed that the need for tuning follows a skewed distribu-
tion, and that while total Shannon entropy is strongly correlates with performance gain,
the correlation per component is weak. The question which component needs the most
tuning depends on the precise composition of an EA and can not be answered on a gen-
eral level. It needs to be addressed by the operational analysis of individual EAs. We
recommend that a scientific discussion of individual operators addresses their effect on
the overall tunability of an EA and on the need for tuning per component.

Regarding the scope of our results, an empirical study can only use a limited set of
test problems, and strictly speaking our findings are only proven for our test problems.
However, we consider it unlikely that the complex picture that has emerged here is an
artefact of the test problems. What remains to be studied is whether the way in which
the need for tuning per component depends on the choice of operator for other compo-
nents is different on other complex fitness functions.
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