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HOW TO EVOLVE STRATEGIES IN COMPLEX

ECONOMY-ENVIRONMENT SYSTEMS

Abstract

An evolutionary model of economic behavior is not plausible if its parameters
need excessive tuning. Here we illustrate how Relevance Estimation and Value Cali-
bration (REVAC) can help to find a simple and robust model of an evolutionary sys-
tem that allows the agents to adapt well to complex environmental dynamics. We
apply REVAC to tune two versions of an evolutionary agent-based economic simu-
lation, one where agent behavior is parameterized differently based on relative wel-
fare, and one where there is no such distinction. We find that for equal levels of per-
formance of the evolutionary model, the extra features of the first model increase
the overall need for tuning. They should therefore be discarded. We find further that
tuning those parameters that control the diversity of strategies is most relevant to
the adaptive capabilities of the agents.

4.1 Introduction

One of the canonical challenges in evolutionary computing is to select and tune param-
eters of an evolutionary algorithm (EA) (Eiben et al., 1999; Eiben and Smith, 2003), i.e.,
parameters that regulate variation (mutation and recombination), selection, population
size, and so on. Often these parameters need to be optimized such that the EA delivers
good and robust solutions for a whole family of similar problems. This is true for “tradi-
tional” optimization and design applications. For instance, when solving a scheduling

This chapter is an extended version of Nannen and Eiben (2006), which has won a best paper award at
the Genetic and Evolutionary Computation Conference 2006 in Seattle.
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68 4. How to Evolve Strategies in Complex Economy-Environment Systems

task with a genetic algorithm, it can be hard to establish good values for the mutation
rate, crossover rate, tournament size and population size that give good solutions for
all possible problem instances. The problem intensifies in more complex applications
like agent-based simulations in the fields of artificial life, artificial societies and evolu-
tionary economics. In such applications evolution is not only the “problem solver” that
is expected to lead to “optimality” in some application specific sense. It has to fit in
with the general system description and provide a better understanding of the general
dynamics of the evolutionary system under investigation.

When used to model real life phenomena, the evolutionary algorithm can include
domain specific features that are deemed essential to the simulated evolutionary pro-
cess. For instance, mating selection can depend on past interactions between individu-
als, and mutation can be sensitive to environmental factors. When asking whether such
features do indeed benefit the evolutionary process in a robust way—e.g., without the
need for excessive tuning—common EA wisdom (heuristics and conventions learned
over the decades) regarding EA setup is hardly applicable, since this wisdom is mainly
based on the traditional task of finding optimal parameter values. In contrast, REVAC
provides an information-theoretic measure on how much tuning each parameters of an
EA needs so that the EA reaches a given performance, independent of the actual tuning
method. This can be used to evaluate the benefits a domain specific feature, as well as
to choose between different possible sets of features, from the point of view of robust
performance.

We illustrate this robustness test by applying REVAC to the evolution of investment
strategies in an economic simulation. We provide a summary of the agent-based appli-
cation, the non-linear system dynamics that the agents have to adapt to, and the specific
evolutionary algorithm which consists of random mutation and selective imitation (re-
combination) of investment strategies in a social peer network. We describe our initial
evolutionary algorithm of 13 parameters, reflecting our best intuitions on the evolution-
ary dynamics in the given context. Next we describe how REVAC effectively disproves
our initial intuitions and leads us to a simplified evolutionary algorithm of 6 parameters
that allows the evolutionary agents to reach the same level of aggregate welfare. Because
the simpler evolutionary model needs less tuning to achieve the same aggregate welfare,
we conclude that its predictive power and general validity have improved.

Some fundamental insights by A. Kolmogorov on the relation between individual
data and (probabilistic) sets that contain them where published only recently (Vereshcha-
gin and Vitányi, 2002). Early attempts to relate the generalization power of a statistical
model to some practical estimate of algorithmic complexity were based on the number
and precision of the parameters involved: first the Akaike Information Criterion (AIC)
(Akaike, 1973) and then the Minimum Description Length (MDL) principle (Rissanen,
1978). Later, J. Rissanen, A. Barron and B. Yu developed a version of MDL based on
parametric complexity (Barron et al., 1998). All these methods are based on a functional
analysis of the statistical model in question. This is not possible here, simply because
no analytic tool can tell us how many previously unsolvable problems can be solved by
adding feature x to an EA. REVAC is intended to fill this gap by numerical estimation.
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4.2 The economic model

4.2.1 General features of the model

The agent-based application treated here is concerned with a finite number of economic
agents which may be interpreted as national or regional authorities in charge of do-
mestic energy policy. The agents are challenged to adapt their investment strategies to
resource constraints and technological change. The investment strategy of each agent
specifies how it allocates its investment over these sectors. Initially all agents use fos-
sil fuel for their energy needs, which has finite supply. In order to sustain economic
growth, the agents need to identify a viable source of renewable energy from among
a number of nonviable alternatives. Invested capital is non-malleable: once invested
it cannot be transferred between sectors. Standard economic growth and production
functions describe how capital accumulates in each sector and contributes to income.
These functions are not aggregated: growth and returns are calculated independently
for each agent. Two agents with different investment strategies can experience very dif-
ferent growth rates and income levels.

The numerical simulations are based on a discrete synchronous time model where
the income and strategy of each agent is updated in parallel at fixed time intervals. Each
simulation step is divided into two separate update operations: updating the economy—
each agent invests its income according to its own investment strategy and the individ-
ual incomes and growth are calculated by the non-aggregate growth and production and
growth functions—and updating the strategies, when all agents compare their growth
rate with that of their peer group, and when those agents that decide to imitate change
their respective strategies simultaneously. Each computer simulation is divided into an
initialization phase of 50 time steps during which all strategies are fixed, and a main
experimental phase of 500 time steps during which all agents are free to change their
strategy. The initialization phase is needed to avoid influencing the simulation results
by the choice of initial values. During initialization the simulated economy stabilizes
and a “natural” distribution of strategies and growth emerges. All initial strategies are
drawn independently at random from the space of possible strategies.

4.2.2 Strategies, investment, and production

The economy has n = m+4 investment sectors: consumption C , general capital K , fossil
energy F , one viable renewable energy source R0 and m nonviable alternative energy
sources R1, . . . ,Rm . The number m of nonviable alternatives controls the difficulty of
finding the viable source of renewable energy. Formally, an investment strategy sa(t ) of
agent a at time t is an n-dimensional vector that specifies what fraction of income the
agent invests in the respective sectors,

sa(t ) = [0,1]n ,
∑

i

si a(t ) = 1. (4.1)

The first fraction s1a(t ) = sC ,a(t ) specifies the fraction of income that is consumed; the
second fraction s2a(t ) = sK ,a(t ) specifies the fraction of income that is invested in gen-
eral capital; the third fraction s3a(t ) = sF,a(t ) specifies the fraction of income that is in-
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vested in fossil energy; and the remaining fractions specify what is invested in the m

renewable energy sectors.
Growth in each sector except consumption depends on investment, the learning

factor L that reflects the state of technology in that sector and a deprecation which is
constant and equal for all sectors and agents. The availability of fossil fuel is physically
limited and divided among the agents according to their relative investment. Growth in
this sector is therefore at a disadvantage when compared to renewable energy sectors.
We use a deprecation δ of .05. The growth functions are

∆Ka(t ) = sK a(t )Ya (t )LK −δKa(t ), (4.2)

∆Fa(t ) =
sF a(t )Ya (t )LF

∑

b∈P sF,b(t )Yb(t )
−δFa(t ), (4.3)

∆Ri a(t ) = sRi a (t )Ya(t )LRi
−δRi a(t ) for each Ri . (4.4)

The learning factor L grows endogenously with the log cumulative investment of all
agents in that sector, multiplied by sector specific learning rate zi (for a discussion of the
learning function see Nordhaus (2002)). For convenience we use the same deprecation
for technology as for capital, δ = .05, implicating that half of all technological achieve-
ments become outdated or otherwise irrelevant after 13 to 14 time steps.

∆Li (t ) = zi log(1+
∑

a

si a(t ))−δLi (t ) for all i . (4.5)

The learning rate z determines how fast a technology develops with investment. To
allow a stable economic growth of 2–3% per time step of the simulation we use zK = .01.
Given the resource constraint on fossil fuels we need a high zF = 1 so that fossil fuel
supplies can initially satisfy rising demand. To make one renewable energy a viable al-
ternative to fossil energy we give it the same learning rate zR0 = .01 as general capital.
The learning rate of all other renewable energy technologies is so low that any invest-
ment in them has no long term effect. zR1 , . . . , zRm = .0001

The domestic income Ya(t ) of agent a at time t is calculated by a Cobb-Douglas type
production function with constant returns to scale. In this function fossil energy and
renewable energy are perfect substitutes—one can completely replace the other. Gen-
eral capital and the energies are imperfect substitutes—investing everything or nothing
in energy will ruin the economy, and the best distribution of investment over general
capital and energy depends on the production coefficient α. We set this coefficient to
α= .9, so that agents have to invest about 10% of their total income in energy in order to
achieve healthy growth rates. The production function is

Ya(t ) = Ka(t )α
(

Fa(t )+
m
∑

i=0
Ri a(t )

)1−α

. (4.6)

The welfare of an individual agent a at time step t is measured by its individual invest-
ment in consumption Ca(t ), which is calculated as

Ca(t ) = sC a(t )Ya(t ). (4.7)
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The aggregate welfare W (t ) at the population level is calculated from the discounted
mean of the logarithm of individual welfare,

W (t ) =
d t

|P |

∑

a∈P

logCa(t ), (4.8)

where |P | is the size of the population and where d is the rate at which future welfare is
discounted. We use a discount rate of d = .97.

4.2.3 The social network

As has been extensively discussed by Wilhite (2006), agent-based simulation of eco-
nomic processes needs to give proper attention to the social network. We use a generic
class of social networks that reproduce a number of stylized facts commonly found in
real social networks, namely small world networks (Erdős and Rényi, 1959) that have a
scale-free degree distribution generated by a stochastic growth process with preferen-
tial attachment (Barabási and Albert, 1999) and that have a high clustering coefficient
C (Watts and Strogatz, 1998).1 According to Tomasini (2005), an evolutionary algorithm
with spatial structure is of advantage when dealing with dynamics problems. Lieber-
man et al. (2005) have shown that spatial structures like scale-free networks are a potent
selection amplifier for mildly advantageous mutants.

Before the start of each simulation we use a stochastic process to generate a new bi-
directional network where the nodes are agents and the edges are communication links.
The process assigns to each agent a a set of peers Na that does not change during the
course of the simulation. If agent a is a peer of agent b, then a will consider the income
growth rate and the investment strategy of b when choosing an agent for imitation, while
b will consider the income growth rate and the investment strategy of a. On the other
hand, if a and b are not peers, they will not consider each other for the purpose of imi-
tation. The generating process starts from a circular network where each agent has two
neighbors—i.e., average connectivity k =2—and iteratively adds new edges to the net-
work until the desired average connectivity k is reached. The agents for the next new
edge are chosen at random with a probability that is proportional to their connectivity
(hence the term “preferential attachment”) and their proximity in the network, i.e., the
inverse of the minimum number of links to traverse from one agent to the other.

The random way in which the network is created guarantees that the average dis-
tance between any two agents is very short, significantly shorter for example than in a
regular grid. The preferential attachment leads to a very skewed distribution of peers
per agent, with some agents having several times the median connectivity. These well
connected agents act as information hubs and dominate the flow of information. A high
clustering coefficient implies that if two agents are peers of the same agent, the prob-
ability that they are also peers of each other is significantly higher than the probability
that two randomly chosen agents are peers. This leads to the emergence of blocks within
the social network that exhibit a high level of local interconnectivity.

1In their seminal paper Watts and Strogatz (1998) define the clustering coefficient Ci of a node i as the
number of all direct links between the immediate neighbors of i divided by the maximum number of links
that could possibly exist between them. They define the clustering coefficient C of the entire network as the
average clustering coefficient of the nodes of the network.
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Figure 4.1: Network statistics

Figure 4.1 shows some key statistics collected from 10.000 networks of 200 agents
that were created with an average connectivity of k = 10. The graphs show a normalized
histogram of the clustering coefficient of each network (average .66), a normalized his-
togram of the distance between any two agents in each network, the probability density
function (PDF), and the cumulative density function (CDF) of the number of neighbors
per agent in each network. Note the relatively high probability of having 20 or more
neighbors when the average connectivity is 10 neighbors. Such significant numbers of
highly connected agents do not exist in regular grid networks or random networks of
the Erdős-Rényi type, yet their existence in real social networks is well established. They
generally act as information or transportation hubs and accelerate the dissemination of
goods, viruses and ideas.

4.2.4 The evolutionary mechanism

It is important to note that in this EA agents and strategies are not the same. An agent
carries or maintains a strategy, but it can change its strategy and we still consider it as
the same agent. This dichotomy is necessary so that we can maintain a social network
among the agents, while evolving, i.e., changing, the strategies. Because every agent
has exactly one strategy at a time, the active number of active strategies is constant and
equals the number of agents.

The first step in determining the selection probabilities is to rank all agents and their
peers according to their respective welfare as measured by consumption. Let Na denote
the peers of agent a. The normalized rank ra(b) ∈ (01] is the position of agent b among



4.2. The economic model 73

the group consistent of a and the peers of a, divided by the size of this group,

ra(b) =

∣

∣{c |c ∈ Na ∪ {a}, Cc (t ) ≤Cb(t )}
∣

∣

|Na |+1
. (4.9)

If Cc (t ) = Cb(t ), agents b and c are assigned the same rank. The best agent of a group
of peers always has rank 1 while the worst one has rank (|Na |+1)−1, which is close to
zero. The special case ra(a) is important as it describes how an agent perceives its own
economic performance relative to that of its peers. Note that this value does not need to
be distributed uniformly over (01]—the fact that the size of Na is different for different
agents leads to a bell shaped distribution, which is skewed when there is correlation
between welfare and the size of Na .

We introduce two probabilistic selection mechanisms, one to decide whether a given
strategy will be changed by mutation and one to decide whether it will be changed by
selective imitation of a peer in the social network. In terms of traditional evolutionary
computing (Eiben and Smith, 2003), imitation corresponds to recombination. However,
there is an important difference between imitation as used here and usual recombi-
nation in traditional evolutionary computing, where the two recombinants have a sym-
metrical role: both receive (genetic) information from each other and incorporate it into
the offspring. In our imitation mechanism the roles are asymmetrical. One agent imi-
tates the other by receiving its strategy and recombining it with its own. The imitating
agent changes its strategy, while the strategy of the imitated agent does not change.

Reflecting our best knowledge and intuition on social systems, we assume that these
selection mechanisms depend on relative welfare. They should work differently for
agents that have high ra(a) perceive themselves as rich and for agents that have a low
ra(a) and perceive themselves as poor. We define two different sets of parameters for
the selection mechanisms, one for agents with a high self-perception, which we mark
with a subscript r for rich, and one for agents with a low self-perception, which we mark
with a subscript p for poor. We also introduce two threshold parameters ρ f and ρg to
specify whether an agent perceives itself as rich relative to its peers. If ra(a) > ρ f , an
agent perceives itself as rich with regard to mutation. If ra(a) > ρg , an agent perceives
itself as rich with regard to imitation.

Mutation in our simulation is implemented by Gaussian mutation. That is, an agent
mutates its strategy vector by adding a random value drawn from a Gaussian distribu-
tion with zero mean. This implies that small mutations are more likely than large ones.
The parameters fp and fr (for poor and rich agents respectively) specify the probability
that an agent will mutate its strategy at each time step of the simulation,

P [a mutates its strategy] =

{

fp if ra(a) ≤ ρ f ,

fr if ra(a) > ρ f .
(4.10)

The parameters σp and σr specify the standard deviation of the random value that
is added to a mutated strategy. The exact formula for changing the strategy vector s(t )
into s′(t +1) is

s′a(t +1) = sa(t )+

{

N(0,σp ) if ra(a) ≤ ρ f ,

N(0,σr ) if ra(a) > ρ f ,
(4.11)
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where N(0,σ) denotes a normally distributed random vector with zero mean and stan-
dard deviation σ. In order to avoid negative investments we add the additional con-
straint that sa(t )+N(0,σ) is non-negative.

Imitation is performed by combining two strategies through linear combination.
The resulting vector replaces the strategy of the imitating agent, while the strategy of
the imitated agent remains the same. The parameters gp and gr specify the probability
that an agent will imitate at each time step of the simulation,

P [a imitates] =

{

gp if ra(a) ≤ ρg ,

gr if ra(a) > ρg .
(4.12)

In the event that agent a does imitate it needs to choose one of its richer peers to imi-
tate. The parameters hr and hp specify the fraction of rich peers from which the agent
chooses a random peer to imitate. That is, a poor agent with ra(a) ≤ ρg chooses an agent
to imitate according to

P [a imitates b] =







0 if ra(b) ≤ hp ,
⌈

(

1−hp

)

×|Na |

⌉−1
if ra(b) > hp ,

(4.13)

and a rich agent with ra(a) > ρg chooses an agent to imitate according to

P [a imitates b] =







0 if ra(b) ≤ hr ,
⌈

(1−hr )×|Na |

⌉−1
if ra(b) > hr .

(4.14)

If a imitates b, then the strategy sa(t ) is linearly combined with sb(t ) into s′a(t +1) ac-
cording to

s′a(t +1) =

{

(1−wp ) sa(t )+wp sb(t ) if ra(a) ≤ ρg ,

(1−wr ) sa(t )+wr sb(t ) if ra(a) > ρg ,
(4.15)

where wp and wr is the weight that is given to the imitated strategy by poor and rich
agents respectively. Since the investment fractions are constrained to sum to one, the
resulting strategy is normalized,

sa(t +1) =
s′a(t +1)

|s′a(t +1)|
. (4.16)

The average connectivity k is the only free parameter of the social network and we
will test values of k between 2 and 30. The resulting 13 parameters (1 parameter for aver-
age connectivity, 5 for mutation, and 7 for imitation) are shown in the first two columns
of Table 4.1. On top of the “traditional” task of finding good values for these parame-
ters we want to know if they are 1) indeed relevant for the evolutionary algorithm and
2) sufficient to tune the system. Here we call a parameter relevant if the aggregate agent
welfare depends on the correct tuning of the parameter. Irrelevant parameters should
be removed from the model for the sake of analytic clarity and computational stability.
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Table 4.1: The 13 parameters of the initial evolutionary model

Parameter Shannon entropy Standard deviation
k average connectivity -0.1 0.2
ρ f threshold rank for mutation -0.3 0.4
fp P [poor agent mutates its strategy] -1.0 0.7
fr P [rich agent mutates its strategy] -3.9 1.4
σp mutation variance of poor agent -1.8 1.4
σr mutation variance of rich agent -2.2 1.4
ρg threshold rank for imitation -0.1 0.1
gp P [poor agent imitates] -0.5 0.3
gr P [rich agent imitates] -0.3 0.3
wp imitation weight of poor agent - 0.3 0.3
wr imitation weight of rich agent -0.2 0.2
hp imitated neighbors of poor agent -0.2 0.2
hr imitated neighbors of rich agent -0.6 0.7

4.3 Experiments

4.3.1 Evaluating the initial evolutionary model

In the present application we want the economic agents to achieve a high aggregate
welfare in a broad set of simulated economic environments. We add three scaling pa-
rameters to the agent-based application described in Section 4.2 to define a total of 18
different economic environments. They are

• The number of agents (200 or 2,000).

• The number of investment sectors with nonviable renewable energy technologies
(2, 20, or 200). In all cases the simulation has exactly one investment sector with
a viable technology and the number of nonviable technologies controls the diffi-
culty of finding this viable technology.

• The vulnerability (“low”, “moderate”, or “high”) of the agent economies to climatic
change. Exactly one investment sector leads to climatic change and the agents
have to avoid investing in this sector.

Starting with the initial parameter set of 13 parameters we search for a distribution
over parameter values with a good tradeoff in aggregate welfare and tuning cost for each
of the 18 environments. As REVAC updates the marginal distributions over the param-
eter values, the expected aggregate welfare increases and the Shannon entropy of the
marginal distributions decreases almost monotonically. Figure 4.2 illustrates this with
graphs from three experiments with 200 agents, low vulnerability and three different
numbers of nonviable technologies. The increase in aggregate welfare is greatest at the
beginning of a REVAC tuning session, then slows down and comes to a halt after evalu-
ating between 160 and 190 parameter vectors. On the other hand, the Shannon entropy
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Figure 4.2: Aggregate welfare and Shannon entropy of the initial model of 13 parameters
during a REVAC tuning session.

of the joint distribution that REVAC has estimated decreases linearly until about 200 pa-
rameter vectors are evaluated. In most simulated environments it continues to decrease
even after that. Visual inspection of the results of all experiments leads us to conclude
that the tradeoff between aggregate welfare and Shannon entropy is best after evaluating
between 175 and 185 parameter vectors.

Table 4.1 shows the average Shannon entropy per parameter in bits together with
the standard deviation. The results are averaged over all 18 simulated environments
and over the marginal distributions obtained after evaluating 175–185 parameter vec-
tors. Only 4 parameters show a Shannon entropy of 1 bit or more, which means that
the performance of the evolutionary algorithm depends heavily on the correct tuning
of these parameters. On the other hand, tuning of the other parameters seems largely
irrelevant to aggregate welfare and their number should be reduced. The 4 relevant pa-
rameters define the probabilities to mutate a strategy ( fp , fr ) for poor and rich agents
and the mutation variance (σp , σr ) for poor and rich agents. REVAC tunes these pairs
of parameters to similar values (not shown in the table) and we concluded that they can
be combined into one parameter each. These results thoroughly falsify our original hy-
pothesis that agent behavior should depend on relative welfare and that it needs to be
tuned by different sets of parameters.

4.3.2 Evaluating a simplified evolutionary model

To verify these conclusions we simplify the evolutionary model by removing all behav-
ioral differences between agents that perceive themselves as rich and agents that per-
ceive themselves as poor. This leaves us with the six parameters shown in Table 4.2:
connectivity k, probability to mutate f , mutation variance σ, probability to imitate g ,
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Table 4.2: The 6 parameters of the simplified evolutionary model

Parameter
Shannon Standard 25th and 75th

entropy deviation percentiles
k average connectivity -0.1 0.2 5.8–18.2
f P [a mutates its strategy] -3.2 1.2 0.01–0.07

σ mutation variance -3.3 1.3 0.02–0.07

g P [a imitates] -0.5 0.4 0.54–0.88
w imitation weight -0.3 0.3 0.41–0.88
h threshold rank imitated -1.0 0.6 0.69–0.93

Notes. Results are averaged over the marginal distributions obtained after evaluating
175–185 parameter vectors. Initial parameter ranges are 0–1, except for connectivity,
which has 2–30.

imitation weight w and threshold rank h of rich agents that are considered for imitation.

Figure 4.3 shows the aggregate welfare and Shannon entropy of the simplified model
during tuning. Comparing the data visually we find that the best payoff between welfare
and Shannon entropy is again achieved after evaluating about 180 parameter vectors.
For each parameter of the simplified model Table 4.2 shows the average Shannon en-
tropy of each marginal distribution, its standard deviation, and the 25th and 75th per-
centile of the marginal distribution at this point in the tuning process—results are av-
eraged over all tested environments and over the marginal distributions obtained after
evaluating 175-185 parameter vectors. As with the initial set of parameters, mutation
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Figure 4.3: Aggregate welfare and Shannon entropy of the simplified model of 6 param-
eters during a REVAC tuning session.
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Figure 4.4: Aggregate welfare as a function of Shannon entropy.

proves to be the most sensitive part of the simplified evolutionary model. Both the prob-
ability to mutate a strategy and the mutation variance have to be well tuned in order to
allow the agents to adapt to their environment. The tuning of h (the fraction of richer
neighbors to be imitated) also shows significant impact on aggregate welfare. The imi-
tation parameters and the average number of neighbors prove to be almost irrelevant.

Figure 4.5 shows how REVAC tunes the parameters of the simplified model, averaged
over the 18 simulated environments. Differences in the optimal parameter values (not
shown here) are small between environments. For example, an increase in the number
of nonviable technologies leads to lower values for the mutation parameters, apparently
because mutation becomes riskier. However, such differences show consistently only in
a later stage of a REVAC tuning session, typically after evaluating more than 200 pa-
rameter vectors. REVAC achieves the best tradeoff in expected aggregate welfare and
Shannon entropy after evaluating 180 parameter vectors, and at that point the optimal
parameter values are similar for all tested environments. This means that at least for
the simulated environments discussed here REVAC tunes the parameters in a stable and
consistent way and maximizes the performance of the evolutionary algorithm without
compromising general validity.

After tuning the simplified evolutionary model to all 18 simulated economic en-
vironments we find that with equal cost of tuning the simplified model consistently
achieves a higher aggregate welfare. To illustrate this, Figure 4.4 plots the aggregate wel-
fare against the Shannon entropy that REVAC has estimated for the two evolutionary
models. The x-axis shows the Shannon entropy of the joint distribution as it decreases
during a REVAC tuning session. The y-axis shows the average aggregate welfare of the
simulation when parameter values are drawn from REVAC distributions with the cor-
responding Shannon entropy. The graphs are based on simulations with 200 agents, 2
nonviable renewable energy technologies and low vulnerability to climatic change. The
right cut off of each line marks the Shannon entropy after evaluating 300 parameter vec-
tors. While the aggregate welfare at these cut off points is comparable for the two mod-
els, the 13-parameter model needs a significantly larger amount of information to reach
it. In general, for each level of Shannon entropy, the aggregate welfare of the simplified
6-parameter model exceeds that of the initial 13-parameter model by about 10%. We
conclude that the tradeoff in aggregate welfare to tuning cost is better with the simpli-
fied set of evolutionary parameters.
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Figure 4.5: Tuning the 6 parameters of the simplified model. 50% of the density is located
between the two solid lines, 80% between the dashed lines.

4.4 Conclusions

We illustrated how REVAC can support modeling activities: by showing the experimenter
which model details can be considered as irrelevant—at least for the purpose of increas-
ing a particular performance indicator like aggregate welfare. The Shannon entropy of
the marginal distributions optimized by REVAC provides us with a useful measure of
tuning cost that is independent of the actual tuning method. When comparing the 13-
parameter model with the 6-parameter model we find that with equal tuning cost the
6-parameter model consistently outperforms the 13-parameter model by a significant
amount of aggregate welfare. We conclude that there is no evidence that agents should
condition their evolutionary behavior on relative welfare. Regarding individual param-
eters we find that the mutation parameters are the most relevant parameters in all ver-
sions of the evolutionary model in the sense that tuning them has the biggest effect on
aggregate welfare. Tuning the fraction of peers that can be imitated is also important.
The details of the social network, in particular the average connectivity, seem to be ir-
relevant, but warrant further research.
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