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IMPACT OF ENVIRONMENTAL DYNAMICS ON

ECONOMIC EVOLUTION: UNCERTAINTY, RISK

AVERSION, AND POLICY

Abstract

The general question of how environmental dynamics affect the behavioral in-
teraction in an evolutionary economy is considered. To this end, a basic model of
a dynamic multi-sector economy is developed where the evolution of investment
strategies depends on the diversity of investment strategies, social connectivity and
relative contribution of sector specific investments to production. Four types of en-
vironmental dynamics are examined that differ in how gradual and how frequent
environmental change occurs. Numerical analysis shows how the socially optimal
level of diversity increases with the frequency and rapidity of the changes. When
there is uncertainty about which type of environmental dynamics will prevail, the
socially optimal level of diversity increases with the degree of risk aversion of the
policy maker or the society.

5.1 Introduction

Evolutionary reasoning and agent-based modeling are standard practice in various dis-
ciplines, including social sciences (e.g., Binmore, 1994; Galor and Moav, 2002; Tesfat-
sion, 2006; Mirowski, 2007). A typical evolutionary model uses a population of entities
that undergo selection and variation. Although specific domains ask for the develop-
ment of particular types of model, several common, general questions arise. Here we

A revised version has been published as Nannen et al. (2013).
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82 5. Impact of Environmental Dynamics on Economic Evolution

aim to address one such question, namely how does a dynamic environment influence
the behavior of an evolutionary economic system consisting of multiple agents employ-
ing different behavioral strategies. The relevance of this question is evident: few eco-
nomic environments are static.

Generally, one cannot expect evolution in a changing environment to approach a
steady state. What matters is not so much how well the agents adapt if given enough
time, but how fast they adapt to a new challenge. In a socio-economic context a wide
range of environmental variables can be identified: macroeconomic conditions, tech-
nological opportunities, policies and institutions, and natural resources. Most studies of
social behavior through evolutionary methods have been limited to constant environ-
ments, letting selection pressure depend on the population distribution. In part, this al-
lows for analytical treatments, as has been the common approach in evolutionary game
theory (both in biology and the social sciences). The addition of a dynamic environ-
ment requires a numerical or computational approach. As environmental economics
deals with the economic analysis of exploitation of natural resources, abatement of en-
vironmental pollution, and human-induced climate change, dynamic environments are
prevalent. The evolution of strategies is important when heterogeneous groups of users,
polluters, or harvesting strategies are involved (Ostrom, 2000; van den Bergh, 2007). Dy-
namic environments may cause certain strategies to become evolutionary stable and
others to become unstable. We will not only draw upon the social sciences but also
make use of certain insights from evolutionary biology. Evidently, many explicit and
implicit insights on the influence of environment on evolution are available here.

For our purpose a relevant distinction is between exogenous and endogenous en-
vironments. Whereas systems with only exogenous variables are relatively simple, en-
dogenous variables generate complex feedback systems. Unfortunately, most real-world
systems studied by biologists and social scientists are of the latter type. Resource dy-
namics (e.g., Sethi and Somanathan, 1996; Noailly et al., 2003) and dynamic control of a
pest population that evolves resistance to pesticides (Munro, 1997) are policy-relevant
examples. Another, general example is a coevolutionary system in which two heteroge-
neous populations cause selection pressure on one another (Epstein and Axtell, 1996).
This leads to very complex coevolutionary interactions because the environment of each
evolutionary (sub)system is evolving as well. Coevolution thus implies a particular type
of dynamic and endogenous environment (Noailly, 2008).

With regard to the evolutionary system, there is a range of theoretical starting points
and modeling approaches (Eiben and Smith, 2003; van den Bergh, 2004). First of all,
one can choose to use very theoretical, abstract models of the evolutionary game type.
However, adding dynamic environments here will lead to systems that are no longer
amenable to analytic solutions. Numeric simulations of multi-agent systems form an
alternative to the analytic approach that offer much more flexibility in examining sys-
tem behavior. They allow a distinction between local and global environments, and
between stationary and mobile agents. They further allow to study the influence of pop-
ulation size, and the effects of dynamic environments on group and network formation
(Bergstrom, 2002; Henrich, 2004). In addition, different assumptions can be made re-
garding selection factors and innovation mechanisms (random mutations, determinis-
tic trends, recombination) and bounded rationality of agents (habits, imitation).
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In this chapter we investigate the impact of various types of general environmental
dynamics on the socially optimal type of behavioral interactions among the agents in
the population. We consider the general structure of a dynamic non-aggregate multi-
sector economy. Agents have individual investment strategies that specify how they in-
vest their respective income. Their objective is to maximize their individual welfare.
They prefer investment strategies which give high welfare. Their rational capabilities
are bounded and their information is limited. The only information available to the
agents is the investment strategies and the welfare of their fellow agents. The behavioral
interactions influence how the agents use this information to evolve their investment
strategies through imitation. Our framework postulates that the environmental dynam-
ics are beyond the control of the policy maker, while he or she can regulate (some as-
pects of) the agent interactions. Various types of government regulation, information
and education affect the search for and effectiveness of innovation by economic agents.
In particular, by regulating how accurately agents can imitate each other, a policy maker
can control the diversity of strategies within the population. Examples of policies that
influence diversity are patent and copyright laws, conditions for competition for public
R&D funds and subsidies, and the support or enforcement of industry standards.

We will study the effect of diversity on welfare numerically through computer sim-
ulations. We will address two research questions. The first is whether it is true that
different environmental dynamics require different degrees of diversity for the agents to
achieve a high welfare. The second question follows from the fact that environmental
dynamics are not only beyond the control of the policy maker, but that they are also
uncertain to him. This raises the issue of adequate policies under uncertainty: how do
agent interactions that work well for one type of environmental dynamics perform un-
der another environmental dynamics? Depending on the degree of risk aversion of the
policy maker or the society, different policies can be recommended.

As for the environmental dynamics, we focus on two general aspects of environ-
mental change: how gradually it occurs, and how often. Gradualness and frequency
of change are two aspects of an environmental dynamics that can relatively easily be
observed and recognized. Depletion of a mineral resource, for example, typically mani-
fests itself over an extended period of time, while a biotic resource like fish can disappear
literally overnight. Or a remote agricultural community is normally exposed to environ-
mental hazards less frequently than one surrounded by a heavily industrialized region.
If a policy maker can anticipate these aspects of environmental change, he or she might
want to steer behavioral interaction such that economic agents can adapt well.

The remainder of this chapter is organized as follows. Section 5.2 describes produc-
tion and growth in an economy with a very general structure and presents the evolu-
tionary mechanism of behavioral interaction. In Section 5.3 the relation between an
investment strategy and the income growth rate is studied. Section 5.4 describes the
experimental setup. Section 5.5 provides simulation results and interpretations. Sec-
tion 5.6 concludes.
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5.2 The economic model

5.2.1 General features of the model

Consider a population of agents with the objective to reach a high level of individual
welfare, which can only be achieved by a sustained high income growth rate. Each agent
can invest its respective income in a finite number of capital sectors. How it allocates
its investment over these sectors is expressed by its individual investment strategy. In-
vested capital is non-malleable: once invested it cannot be transferred between sectors.
Standard economic growth and production functions describe how the invested capi-
tal accumulates in each sector and contributes to income. These functions are not ag-
gregated: growth and returns are calculated independently for each agent. Two agents
with different investment strategies can experience different income growth rates and
income levels.

The agents understand that there is a causal link between an investment strategy
and economic performance as expressed by the income growth rate, but they cannot
use calculus to find an investment strategy that maximizes the income growth rate. In-
stead, the agents employ the smartest search method that nature has in store, evolution,
and they evolve their investment strategies by imitation with variation. Since they prefer
a high income growth rate over a low income growth rate, they imitate the investment
strategy of a fellow agent when that fellow agent realizes an income growth rate that is
high relative to their own income growth rate and that of their other fellow agents. Imita-
tion is not perfect. Changes that are introduced during imitation guarantee diversity in
the pool of strategies and keep the evolutionary search alive. In the terminology of evo-
lutionary theory an agent selects another agent based on a property (the phenotype) that
is indicative of its current economic performance and imitates its investment strategy
(the genotype) with variation.

5.2.2 Strategies, investment, and production

All variables and parameters of the economic model are summarized in Table 5.1. The
population approach means that accounting of capital investment, production, and in-
come takes place at the level of individual agents. Let Ya(t ) be the income of agent a at
time t and let n be the number of available investment sectors. Formally, the investment
strategy sa(t ) of an agent can be defined as an n-dimensional vector

sa(t ) = [0,1]n ,
∑

i

si a(t ) = 1. (5.1)

The partial strategy si a(t )—which is the i th element of a strategy—determines the frac-
tion si a(t )Ya(t −1) of income that agent a invests in sector i at time t . Each agent must
invest its total income in one sector or another, so the partial strategies must be non-
negative and sum to one. The set of all possible investment strategies is an n−1 dimen-
sional simplex that is embedded in n-dimensional Euclidean space. We call this simplex
the strategy space.

Capital accumulation in each sector depends on the sector specific investment of
each agent and on the global deprecation rate δ. Deprecation is assumed to be equal for
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Table 5.1: Variables and parameters of the model

|P | population size
k average number of neighbors per agent
N neighbors of an agent
C clustering coefficient of the network
n number of investment sectors
β scaling factor of production
δ discount rate
σ diversity control parameter
Ki a capital that agent a has accumulated in investment sector i

πi production coefficient of investment sector i

si a fraction of income that agent a allocates to investment sector i

Ya net domestic income of agent a

γa income growth rate of agent a

all sectors and all agents. The dynamic equation for non-aggregate growth per sector is

Ki a(t ) = si a(t )Ya(t −1)+ (1−δ)Ki a (t −1). (5.2)

An extended version of this equation that accounts for dynamic prices can be found in
the appendix. To calculate the income Ya(t ) from the capital that agent a has accumu-
lated per sector, we use an n-factor Cobb-Douglas production function with a constant
elasticity of substitution,

Ya(t ) =β
∏

i

Ki a(t )πi (t ), (5.3)

where β is a scaling factor that limits the maximum possible income growth rate. The
relative contribution of each sector to production is expressed by a dynamic vector of
non-negative production coefficientsπ(t ) = 〈π1(t ) . . .πn(t )〉. To enforce constant returns
to scale, all production coefficients are constraint to add up to one,

π(t ) = [0,1]n ,
∑

i

πi (t ) = 1. (5.4)

Similar to the strategy space, the set of all possible vectors of production coefficients is
an n −1 dimensional simplex that is embedded in n-dimensional Euclidean space.

Production coefficients can depend on an array of economic dynamics, like techno-
logical development and environmental dynamics. When the technology or the envi-
ronment changes, the production coefficients can change as well. Progressive desertifi-
cation of farm land for example increases the dependency of farmers on irrigation. This
can be interpreted as an increase of the production coefficient of irrigation, while some
or all of the other production coefficients of the agricultural production process would
decrease to compensate. Evolutionary economics raises the question of what happens
if the production coefficients change. For this reason we model the environmental dy-
namics as exogenously defined changes in π(t ). This is a general approach that can also
be applied to other economic dynamics such as technological development. Section 5.4
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describes how we implement these changes and how we test whether or not they have
an impact on behavioral interactions.

To measure how well a population of agents is adapted to a certain economic envi-
ronment, we use the expected log income E[logY (t )] of all agents at time t . Expected
log income emphasizes an egalitarian distribution of income. Technically speaking, an
economic agent with constant relative risk aversion prefers a society with high expected
log growth and high expected log income. Let |P | be the total number of agents in the
population P . We calculate expected log growth as

E[logY (t )] =
1

|P |

∑

a

logYa(t ). (5.5)

The individual income growth rate γa(t ) is

γa(t ) =
Ya(t )

Ya(t −1)
−1. (5.6)

Expected log income relates to expected log income growth as

E[logY (t )] =
t

∑

i=1
E[log(γ(i )+1)]+E[logY (0)], (5.7)

where expected log income growth is defined as

E[log(γ(t )+1)] =
1

|P |

∑

a

log(γa(t )+1). (5.8)

5.2.3 The evolutionary mechanism of behavioral interactions

From the point of view of evolutionary modeling, agents and investment strategies are
not the same: an agent carries or maintains a strategy, but it can change its strategy
and we still consider it to be the same agent (Nowak, 2006). Because every agent has
exactly one strategy at a time, the number of active strategies is the same as the number
of agents.

To model which agents an agent can imitate we use a generic class of social net-
works that has been well studied and validated in network theory, namely those that
can be generated by a random process with preferential attachment and that have a
high clustering coefficient, see Section 4.2.3 on page 71 for details. Before the start of
each simulation a stochastic process assigns to each agent a a set of peers Na that does
not change during the course of the simulation. If agent a is a peer of agent b, then a

will consider the income growth rate and the investment strategy of b when choosing
an agent for imitation, while b will consider the income growth rate and the investment
strategy of a. On the other hand, if a and b are not peers, they will not consider each
other for the purpose of imitation.

At each time step t an agent may select one of its peers in the social network and
imitate its strategy. If that happens, the strategy of the imitating agent changes, while
the strategy of the agent that is imitated does not. The choice of which agent to imitate
is based on relative welfare as indicated by the current growth rate of income. The im-
itating agent always selects the peer with the highest current income growth rate. Only
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if an agent has no peer with an income growth rate higher than its own, the agent does
not revise its strategy.

If imitation was the only mechanism by which agents change their strategies, the
strategies of agents that form a connected network must converge on a strategy that was
present during the initial setup. However, real imitation is never without errors. Errors
are called mutations in evolutionary theory. They are fundamental to an evolutionary
process because they create and maintain the diversity on which selection can work.
In this model we implement mutation by adding some Gaussian noise to the imitation
process. That is, when an agent imitates a strategy, it adds some random noise drawn
from a Gaussian distribution with zero mean. This causes small mutations along each
partial strategy to be more likely than large ones. The exact formula by which agent a

imitates and then mutates the strategy of agent b is

sa(t ) = sb(t −1)+N(0,σ), (5.9)

where N(0,σ) denotes a normally distributed n-dimensional random vector with zero
mean and standard deviation σ per dimension. Because partial investment strategies
have to sum to one, we have to enforce N(0,σ) = 0, for example by orthogonal projec-
tion of the Gaussian noise term onto the simplex, resulting in the loss of one degree
of freedom. The error term is further constraint to leave all partial strategies positive.
Needless to say that we do not imply that our boundedly rational agents engage con-
sciously in such mathematical exercise. Subjectively they merely allocate their income
such that none is left.

The sum of squares of the n partial errors, i.e., the square of the Euclidean distance
covered by the error, follows a chi-square distribution with n−1 degrees of freedom and
mean (n−1)∗σ2. In equilibrium, when all agents try to imitate the same perfect strategy,
the expected standard deviation of the partial strategies will in fact be σ. Since the pa-
rameter σ controls the diversity of the investment strategies, we will call it the diversity
control parameter, or simply diversity. It is the only free parameter of this evolutionary
mechanism and has potential policy implications.

5.3 The evolutionary dynamics

5.3.1 The growth rate of a strategy

If we want to understand the impact of environmental dynamics on how agents evolve
their strategies we need to understand if and how these environmental dynamics af-
fect which agents are imitated. Whether the strategy of an agent is imitated depends
on whether the agent has a higher income growth rate than those agents it is compared
with. We call the mapping from investment strategies to income growth rate the growth

function. The growth function calculates the equilibrium growth rate that an imitating
agent realizes if it holds on to a particular investment strategy. If the growth function
maps one strategy to a higher equilibrium growth rate than another strategy, then our
evolutionary agents will prefer this strategy over the other strategy and imitate it. In this
way the growth function indicates which of any two strategies will survive and prop-
agate. Since it depends only on the order of income growth rates—i.e., which of any
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two agents has a higher income growth rate—whether an agent is imitated, the evolu-
tionary dynamics is invariant under any strictly increasing transformation of the growth
function. Any two growth functions that are strictly increasing (or decreasing) transfor-
mations of each other lead to the same evolutionary dynamics.

Let us start the derivation of the growth function with an analysis of the equilibrium
ratio of sector specific capital to income, Ki a(t )/Ya (t ), that will be achieved if an agent
holds on to a particular strategy. The dynamic equation of this ratio is

Ki a(t )

Ya(t )
=

si a(t )Ya (t −1) + (1−δ)Ki a (t −1)

(γa(t )+1) Ya(t −1)

=
si a(t )

γa(t )+1
+

1−δ

γa(t )+1

Ki a(t −1)

Ya(t −1)
.

(5.10)

This equation is of the form
x(t ) = a +bx(t −1), (5.11)

which under the condition 0≤b<1 converges monotonically to its unique stable equi-
librium at

lim
t→∞

x(t )=a/(1−b).

This condition is fulfilled here: investment is always non-negative and sector specific
capital cannot decrease faster than δ. With constant returns to scale, income cannot
decline faster than capital deprecation, and we have γa ≥−δ. For the moment, let us
exclude the special case γa =−δ. Then, considering that 0<δ≤1, we have the required
constraint

0 ≤
1−δ

γa(t )+1
< 1 (5.12)

and we conclude that the ratio of capital to income converges to

lim
t→∞

Ki a(t )

Ya(t )
= lim

t→∞

si a(t )

γa(t )+1
/

(

1−
1−δ

γa(t )+1

)

= lim
t→∞

si a(t )

γa(t )+δ
.

(5.13)

Equation 5.13 describes a unique stable equilibrium to which the economy of an agent
converges monotonically. We ignore the limit notation and combine equation 5.13 with
equation 5.3 to calculate income at equilibrium as

Ya(t ) =β
∏

i

(

si a(t ) Ya(t )

γa(t )+δ

)πi (t )

=β
Ya(t )

γa(t )+δ

∏

i

si a(t )πi (t ).

(5.14)

We can now solve for γa(t ) to derive the growth function

γa(t ) =β
∏

i

si a(t )πi (t )
−δ. (5.15)



5.3. The evolutionary dynamics 89

Let us return to the special case γa = −δ. According to equation 5.2, capital per
sector decreases at the deprecation rate δ only when it receives zero investment, and
it cannot decrease faster. This implies that with constant elasticity of substitution, a
growth of γa = −δ is only possible if every sector with a positive production coefficient
receives zero investment. This implies si a(t ) = 0 for at least one partial strategy, and so
equation 5.15 holds also for the special case γa =−δ.

5.3.2 Efficiency and level sets of investment strategies

How does the income growth rate of an imitating agent compare to the income growth
rate of a rational agent with perfect information? The term

∏

i si a(t )πi (t ) has a single
optimum at sa(t )=π(t ), allowing a maximum growth of γopt (t ) =β

∏

i πi (t )πi (t )−δ. This
is the income growth rate that a rational agent with perfect information would expect
to achieve. Its exact value depends on the location of the production coefficients in the
simplex. In an n-factor economy the term

∏

i πi (t )πi (t ) varies between a value of 1/n

in the center of the simplex where all production coefficients are equal, and a value of
one in the corners of the simplex where one sector dominates. In order to remove this
variability from the growth function, and to allow an easy comparison with the income
growth rate of a rational agent with perfect information, we define the efficiency E (s, t )
of a strategy s(t ),

E (s, t ) =
∏

i

(

si (t )

πi (t )

)πi (t )

. (5.16)

The efficiency of a strategy measures the fraction γa(t )/γopt (t ) of optimal growth that an
agent achieves with this strategy on given production coefficients, assuming that δ= 0.
If one strategy leads to a higher equilibrium growth rate than another, it is also more
efficient. Efficiency is therefore a monotonic transformation of the growth function that
preserves all information on which agent imitates which other agent, removes the vari-
ability due to the location of the optimum on the simplex, and allows us to measures
growth in terms of what a rational agent with perfect information would achieve.

Efficiency, like the equilibrium growth rate, is a monotonically decreasing function
of the Euclidean distance between the strategy and the production coefficients, |sa(t )−
π(t )|. This function is not symmetric about the optimum but has different slopes in
different directions from the optimum. Figure 5.1 shows how the average efficiency of a
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Figure 5.1: Average efficiency as a function of Euclidean distance to the optimum. The
x-axis shows the Euclidean distance, the y-axis the corresponding average efficiency.
Note the convex shape around the optima.
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Figure 5.2: Probability of positive growth when the investment strategy and the produc-
tion coefficients are chosen independently and at random. The x-axis shows the ratio
δ/β. The y-axis shows the corresponding probability that the equilibrium growth rate is
positive.

strategy decreases as its Euclidean distance to the optimum increases, when strategies
and production coefficients are chosen at random from the simplex. Note the inverse
S-shape of the graphs. As the Euclidean distance tends to zero, the gradient approaches
zero. This implies that when an evolutionary population of agents converges on the
optimum, the differences in growth caused by a small amount of diversity σ around the
optimal strategy are negligible.

A set of strategies each with identical equilibrium growth rate, say γ′, is called a level
set and forms a contour hypersurface in the strategy simplex. All strategies that are en-
veloped by this hypersurface have an equilibrium growth rate that is higher than γ′. This
inner set is convex (for a related proof see Beer, 1980) and so from equation 5.15 satisfies

∏

i

si a(t )πi (t )
≥

γ′+δ

β
. (5.17)

An important level set is
∏

i si a(t )πi (t ) > δ/β. This is the set of all strategies that have
a positive equilibrium growth rate. Its size is proportional to P [γ> 0 |π(t )], the probabil-
ity that a random strategy has a positive equilibrium growth rate with given production
coefficients. Let P [γ> 0] denote the probability that the equilibrium growth rate is pos-
itive if both the strategy and the production coefficients are chosen independently at
random from the simplex. Figure 5.2 shows how P [γ > 0] decreases as δ/β increases,
for economies with respectively 2, 4, and 10 investment sectors. The probability tends
to zero as δ/β approaches 1. For given δ/β, the probability that the equilibrium growth
rate of a random strategy is positive decreases as the number of investment sectors in-
creases.

The parameters δ and β determine the equilibrium growth rate associated with a
given hypersurface, as well as the minimum and maximum equilibrium growth rate that
can be achieved with given production coefficients. They do not affect the location of
the optimum nor the shape of level sets, both of which depend exclusively on the pro-
duction coefficients. In other words, δ and β define monotonic transformations of the
growth function that are irrelevant to the order of equilibrium growth rates and to the
understanding of the evolutionary dynamics as a whole. Also, the rate of convergence in
equation 5.13 does not depend on the scaling factor β. We will make use of this fact later
on in the experimental design where we use a dynamic β for normalization, significantly
reducing the variability of the numeric results.
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5.4 Experimental setup

5.4.1 The environmental dynamics

The growth function, up to a monotonic transformation, depends on the coefficients
of a Cobb-Douglas type production function. When the production coefficients change
with the environmental dynamics, strategies that have previously generated a positive
income growth rate can now generate a negative income growth rate. Agents that have
converged on a strategy that has previously resulted in a high income growth rate can
see their income decline and need to adapt their strategies to the new production co-
efficients. How does the magnitude and duration of this decline depend on the type
of environmental dynamics and on the behavioral interactions among the agents? To
answer these questions we model the environmental dynamics as exogenously defined
changes in π(t ). That is, the environmental dynamics that change the production coef-
ficients are the independent variable that the policy maker responds to. The parameters
of the imitation mechanism are the dependent variables that the policy maker aims to
regulate.

We focus on two aspects of environmental dynamics: how gradual the environment
changes, and how frequently. In combination they define four types of environmental
dynamics: the production coefficients change gradually and with low frequency, gradu-
ally and with high frequency, suddenly and with low frequency, and suddenly and with
high frequency. We compare these with two control systems: one without imitation and
one with imitation and a static environment. Without imitation, with strategies that
are randomly distributed over the strategy space and that stay constant throughout the
simulation, the income growth rate of most agents is most likely negative, irrespective
of the environmental dynamics. Expected log income will decline and welfare at the
population level will be at its lowest. On the other hand, in a static environment where
strategies evolve they are expected to converge on the optimum strategy and welfare at
the population level will be at its highest.

We consider the general case where a change in the production coefficients is de-
fined as the replacement of one vector of production coefficients by another, with each
vector drawn independently and at random from the uniform distribution over the sim-
plex

∑

i πi (t ) = 1. Replacement is instant for a sudden change and by linear transition
for a slow change. A sudden change can be modeled by setting the production coeffi-
cients of a 2-factor economy to π = 〈.1, .9〉 up until time t , and to π = 〈.4, .6〉 from t +1
onwards. Such extreme changes are characteristic of industries that depend on unreli-
able resources, e.g., a biotic resource susceptible to climate change like forests or fish.
A gradual change can be modeled by changing π from 〈.1, ,9〉 at time t to 〈.4, .6〉 at time
t +x linearly over x steps, such that

π(t + j ) =
(x − j )π(t )+ jπ(t +x)

x
, 0 ≤ j ≤ x, (5.18)

where the conditions
∑

i πi = 1 and πi ≥ 0 for all i are fulfilled at all times. Such gradual
changes are characteristic of industries that depend on reliable resources, e.g., a min-
eral resource like iron or coal, where known reserves will typically last for decades if not
centuries.
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Table 5.2: The environmental dynamics

Environmental dynamics Observable Example
gradual, low frequency reliable resource, Kondrat. wave oil/gas reserves
sudden, low frequency unreliable resource, Kondrat. wave climate change
gradual, high frequency reliable resource, Juglar’s cycle tech. innovations
sudden, high frequency unreliable resource, Juglar’s cycle biotic resource

We model low frequency changes by starting the transition from one vector of pro-
duction coefficients to another vector every 50 years, reflecting a Kondratiev type of
wave (Kondratiev, 1935), characteristic of industries that are not a driving force of in-
novation and change only with the general shift in production methods, e.g., forestry.
To model high frequency changes the transition starts every 10 years, corresponding to
the fast business cycles observed by Clément Juglar (1863), characteristic of industries
that invest heavily in research and development. That is, while we acknowledge that
technological innovations are driven by research and development, we treat their effect
on the production coefficients as exogenous environmental dynamics that the agents of
an industry have to adapt to. We do not claim that the cycles observed by Kondratiev and
Juglar are caused by this type of exogenous dynamics. We merely use their observations
as examples of frequency patterns that can indeed be detected when present.

We consider different sequences of production coefficients as different instances of
the same environmental dynamics as long as the individual vectors of production coeffi-
cients are replaced with the same gradualness and frequency. Table 5.2 summarizes the
environmental dynamics used for the experiments. Figure 5.3 gives graphic examples of
production coefficients that are drawn at random according to the specification of each
environmental dynamics. Each row of this figure shows five graphs: one each for the
time evolution of the four production coefficients of a 4-factor economy, and one area
plot that combines the other four graphs into a single graph, stacking the four individual
curves one on top of the other (the upper curve has constant value one), with a different
shade of gray for the area under each curve.

With regard to the dependent variable under control of the policy maker, the imi-
tation mechanism has one free parameter, diversity σ, and we specify the optimal be-
havioral interactions as the diversity σopt (d) that maximizes the expected log income of
each agent under given environmental dynamics d ,

σopt (d) = argmax
σ

E(logY (t ) |σ,d). (5.19)

In order to find this optimal value for different environmental dynamics we use repeated
numerical simulations with different values of σ and measure the expected log income
at the end of each simulation, using standard statistical methods to reduce variance.
Having identified the value σopt (d) at which the expected log income is highest under
a given environmental dynamics, we proceed to formulate policy advice on the socially
optimal level of σ when there is uncertainty over the type of environmental dynamics.
To do so we measure the expected log income that an optimal value σopt (d) generates
on those environmental dynamics d ′ 6= d where it is not optimal. We then calculate the
value that policy makers with different degrees of risk aversion assign to each σopt (d).
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Figure 5.3: Environmental dynamics: changes in the production coefficients. Each row
illustrates a different type of environmental dynamics. The sequences of production co-
efficients are chosen at random. The x-axis shows the 500 time steps (initialization and
main experimental phase). The y-axis of the four graphs positioned at the left of each
row shows the value of one particular production coefficient in a 4-factor economy. The
single graphs at the right are area plots that stack the values of the same four production
coefficients one on top of the other, with a different shade of grey under each curve.
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5.4.2 Implementation details, model calibration, and scaling

The numerical simulations are based on a discrete synchronous time model where the
income and strategy of each agent is updated in parallel at fixed time intervals. We con-
sider each time step t to simulate one financial quarter. As no significant financial mar-
ket requires a publicly traded company to publish financial results more than 4 times a
year, we consider it the limit of feasibility to account for growth and to review an eco-
nomic strategy as often as 4 times a year. Most economic agents will alter their strategy
less often. Each simulation step is divided into two separate update operations: updat-

ing the economy—each agent invests its income according to its own investment strategy
and the individual incomes and growth are calculated by the non-aggregate growth and
production and growth functions—and updating the strategies, when all agents com-
pare their income growth rate with that of their peer group, and when those agents that
decide to imitate change their respective strategies simultaneously.

Each computer simulation spans 500 time steps, simulating 500 financial quarters
or 125 years. These are divided into an initialization phase of 100 time steps or 25 years,
and a main experimental phase of 400 time steps or 100 years. An initialization phase is
needed to avoid influencing the simulation results by an arbitrary choice of initial val-
ues. During initialization the simulated economy stabilizes and a “natural” distribution
of strategies and growth emerges. Initial conditions are always defined in the same way:
all strategies and the initial production coefficients are drawn independently at random
from the simplex. The production coefficients are kept static throughout the initial-
ization phase but the agents can imitate in the same way as they do during the main
experimental phase, with the same σ. During the 400 time steps (100 years) of the main
experimental phase the agents have to adapt to the dynamic changes in the production
coefficients. To avoid any initialization effect, the increase in log income is measured
from the beginning of the main experimental phase.

Numerical methods are inherently constraint by the availability of computational re-
sources. The computational complexity of multi-agent systems typically scales at least
polynomially with system size. The accepted method is to extensively study a system
that is large enough to incorporate all the essential ingredients of the model, and to only
increase the system size to test whether the obtained results are scalable. Here the main
experiments are based on an economy of 200 agents and a 4-factor economy. Sensitivity
and scalability are tested with 1,000 agents and with a 10-factor economy. To under-
stand whether the results depend on the specific implementation of the evolutionary
mechanism we also test more sophisticated implementations: one version where each
agent imitates with probability .1 at every step—as opposed to probability one in the
main experiment—and one version where imitation is partial, such that a new strategy
is a linear combination of the imitated strategy (with weight .1) and the strategy of the
imitating agent (with weight .9). As before, σ controls the standard deviation of the nor-
mally distributed errors per partial strategy.

Recall that the rate of capital deprecation δ (equation 5.2) and the scaling factor β
(equation 5.3) of the production function have no effect on the evolutionary dynamics
and the adaptive behavior of the agents. For the present model we set δ = .01 per time
step—about 4% per year—for all sectors. We use a dynamic β to reduce variability of
the numeric results. As seen in Section 5.3, different vectors of production coefficients



5.4. Experimental setup 95

Table 5.3: Values of economic parameters

population size |P | 200
investment sectors n 4
duration of the initialization phase 100 time steps
duration of the main experimental phase 400 time steps
capital deprecation δ .01
dynamically normalized scaling factor β(t ) .015

∏

i πi (t )−πi (t )

average network connectivity 10

have different optimal equilibrium growth rates. To study how efficient the agents adapt
to different vectors of production coefficients, we correct for this variability in optimal
growth by dynamically normalizing the scaling factor β. To keep the optimal income
growth rate at a value of .005 (i.e., an income growth rate of about 2% per year), we let
the scaling factor β(t ) depend on the vector of production coefficients,

β(t ) = .015
∏

i

πi (t )−πi (t ). (5.20)

With this normalization the equilibrium growth rate of all strategies is constraint to the
range [−.01, .005], where the minimum of −.01 is realized when si a(t )=0 for some pos-
itive πi and where the maximum of .005 is realized when sa(t )=π(t ). Numerical tests
show that with these parameter values the probability that a random strategy has a neg-
ative equilibrium growth rate on random production coefficients is about .65.

To model which agents an agent can imitate we use a generic class of social net-
works that has been well studied and validated in network theory, namely those that
can be generated by a random process with preferential attachment and that have a high
clustering coefficient, see Section 4.2.3 on page 71 for details. Here we use an average
connectivity of k = 10. In a population of 200 agents this value results in a highly con-
nected network—the average distance between any two agents in the network is 2.7—
while maintaining the overall qualities of a complex network.

To improve the general validity of our results we use large number of numerical sim-
ulations where—rather than closely calibrating those factors that affect the evolutionary
dynamics on a specific economy—we define broad parameter ranges and collect statis-
tical information over a representative sample of different possible economies that fall
within these ranges. For example, in order to obtain results that are valid for the gen-
eral class of scale-free social networks with a high cluster coefficient, each simulation is
based on an independent random instance of the social network. Likewise, in order to
obtain general results for specific environmental dynamics, each simulation uses an in-
dependent random sequences of production coefficients, which are replaced according
to the gradualness and frequency of the respective environmental dynamics. The num-
ber of simulations needed to obtain reliable statistical results is determined by standard
methods of variance reduction. The values of all economic parameters are listed in Ta-
ble 5.3.
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5.5 Results

5.5.1 Economic significance of diversity

Figure 5.4 shows the expected log income of an agent for different values of the diversity
control parameter σ, for the two control systems and the four types of environmental
dynamics. 50,000 simulations are used for each graph. 500 different values of σ from
the range [0, .5] are evaluated, and results are averaged over 100 simulations per value.
The plots are smoothed with a moving average with a window size of ten values.

In the first graph of Figure 5.4—the control system without imitation—expected log
income is uniformly negative for all levels of σ. This graph is based on a static envi-
ronment, but the same is observed for any environmental dynamics. All other graphs
of Figure 5.4 show systems with imitation and there is a clear functional relation be-
tween the value of σ and log income. For each system there is a single optimum σopt (d)
that maximizes log income under the given environmental dynamics d , exact values are
given in Table 5.4. The value of σopt (d) is higher for more frequent changes than for less
frequent changes, and higher for sudden changes than for gradual changes. Its value is
lowest in the static environment. Further to this, the graphs show a clear pattern in the
relationship between σ and expected log income: the slope to the left of the optima, i.e.,
for small values of σ, is much steeper than to the right, where σ is large. We will revisit
this fact in our discussion of policy advice under uncertainty.

Our first research question can now be answered: almost any level of diversity σ will
allow the evolutionary agents to reach a positive log income under any environmental
dynamics, yet a unique optimum where log income is highest can be identified for each
environmental dynamics. So while it is not mandatory to define policies that effect σ, in
the sense that imitating agents can almost always return to positive growth, it is optimal
in the sense that there can be a significant gain in expected log income.

Control system, no imitation
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Figure 5.4: Expected log income as a function of the diversity parameter σ. The x-axes
show the diversity σ, the y-axes the resulting log income.
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Table 5.4: Optimal level of diversity σ for each environmental dynamics

Environmental dynamics Optimal σ
static .005
gradual, low frequency .008
sudden, low frequency .046
gradual, high frequency .057
sudden, high frequency .123

5.5.2 Policy advice under uncertainty

When the type of environmental dynamics that affects an economy is unknown, the op-
timal diversity σ depends on the risk preference of the policy maker. We consider four
types of risk preference: extreme risk seeking (maxmax), modest risk seeking (max av-
erage), modest risk aversion (minimax regret), and extreme risk aversion (maxmin). We
calculate the optimal value for each preference from a generalization table where each
σ that is optimal under one environmental dynamics is applied to the other tested envi-
ronmental dynamics, including the static environment. The result is shown in Table 5.5.
Each row shows the expected log income for the same environmental dynamics but dif-
ferent σ, each column shows results for the same σ but different environmental dynam-
ics. Each entry is averaged over 10,000 simulations (with different instances of the social
network and different random sequences of production coefficients). The values in the
diagonal are highest for each row, confirming that the optimal value is indeed the best
choice for a given environmental dynamics.

For each risk preference, each tested σ can now be associated with an expected
value, and the σ with the best such value is considered optimal for the type of risk pref-
erence. This is shown in Table 5.6. Each row shows the value associated with each σ

under a given risk adversity, with the optimal value in Italic type. A risk seeker looks
at the highest expected log income that each tested σ has achieved under the differ-
ent environmental dynamics, and chooses the highest of these. Risk neutrality means
choosing the σ that maximizes the average expected log income over all environmental
dynamics. Under minimal regret the σ is chosen that minimizes the greatest possible
difference between actual log income and the best log income that could have been
achieved. Minimal regret first calculates the maximum possible regret for each σ and
all environments, and then chooses the σ that minimizes this maximum. Risk aversion
means choosing the σ that promises the highest minimum log income under any envi-
ronmental dynamics.

The numerical results clearly show that under uncertainty the optimal value of σ
rises with the degree of risk aversion. This is in line with our earlier observation about
the functional relationship between σ and expected log income: the gradient is steeper
for lower values of σ than for higher values, which makes higher values of σ the safer bet.
These observations are confirmed by the control experiments that test for sensitivity and
scalability and that use alternative implementations of the imitation mechanism.
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Table 5.5: Expected log income when a value of σ that is optimal under one environ-
mental dynamics is applied to other environmental dynamics

Environmental
dynamics that σ
is applied to

Environmental dynamics that σ was optimized for
static gradual, sudden, gradual, sudden,

low freq. low freq. high freq. high freq.
Optimal σ .005 .008 .046 .057 .123

static 1.996 1.995 1.952 1.934 1.794
gradual, low frequency 1.988 1.991 1.969 1.959 1.880
sudden, low frequency 1.117 1.250 1.412 1.406 1.331
gradual, high frequency 0.550 0.721 1.377 1.385 1.308
sudden, high frequency -0.042 0.092 0.529 0.548 0.596

Notes. Each column shows the expected log income when the diversity σ that is optimal
for one type of environmental dynamics is applied to another type of environmental
dynamics. Each row shows the expected log income when agents adapt to a specific
environmental dynamics with a value σ that is optimal for another dynamics.

Table 5.6: Optimal policy advice under uncertainty and different degrees of risk aversion

Type of
policy maker
or society

Environmental dynamics that σ was optimized for
static gradual, sudden, gradual, sudden,

low freq. low freq. high freq. high freq.
Optimal σ .005 .008 .046 .057 .123

risk seeking 1.996 1.995 1.969 1.959 1.880
risk neutral 1.122 1.210 1.448 1.446 1.382
minimal regret 0.835 0.664 0.067 0.062 0.202
risk averse -0.042 0.092 0.529 0.548 0.596

Notes. Each entry is calculated from a column of Table 5.5 and shows the value that a risk
preference assigns to a particular diversity σ. Each row shows the value that is optimal
under that risk preference in Italic type (minimum for minimal regret, maximum for the
others).

We also tested more sophisticated imitation mechanisms where either only a ran-
dom selection of 10% of all agents would imitate per step, or where imitation was partial,
such that a new strategy is a linear combination of the imitated strategy and the strategy
of the imitating agent (again with normally distributed errors per partial strategy). We
also made the selection process—the choice of which agent to imitate—dependend on
income instead of growth. The arrangement of optimal values σopt (d) is similar for each
environmental dynamics. The gradient is always steeper for small values of σ than for
large ones. Under uncertainty the optimal value of σ always increases with the degree
of risk aversion.
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5.5.3 Evolutionary dynamics

Figure 5.5–5.10 show the evolution of some key statistics during the 500 times steps of
the simulation. Figure 5.5 discusses the control systems without imitation (a static en-
vironment is used). Figure 5.6 discusses the control system with imitation and a static
environment. The remaining four figures show the four types of environmental dynam-
ics where agents imitate and where changes occur gradually and with low frequency
(Figure 5.7), gradually and with high frequency (Figure 5.8), suddenly and with low fre-
quency (Figure 5.9), and suddenly and with high frequency (Figure 5.10).

Each figure contains six statistics that describe the economic performance of the
agent population, the heterogeneity of their strategies, and the relevance of connectiv-
ity in the social network at each of the 500 time steps of the simulation. These statistics
are averaged over 10,000 simulations. Each simulation uses a different instance of the
social network and a different sequence of vectors of production coefficients. Two area
plots on top of each group of six illustrate how the production coefficients change under
the respective environmental dynamics. Each area plot shows a single different random
sequence of production coefficients. To further ease the analysis, in Figure 5.7–5.10 dot-
ted vertical lines are inserted into each area plot and each of the six statistics to show the
points in time where the transition to a new set of production coefficients starts.

All statistics react visibly to any change in the production coefficients. This is par-
ticularly interesting for those environmental dynamics where change occurs gradually,
because when a new vector of random production coefficients is introduced only the
momentum changes, not the rate of change. And yet there is a clear and strong eco-
nomic response to this change in momentum. Note that many statistics have reached
some sort of equilibrium after the 100 steps of the initialization phase.

Of the six statistics, the first four visualize the economic performance of the agents.
The first statistic shows the average efficiency (see equation 5.16) over all strategies,
allowing a direct comparison to what rational agents with perfect information would
achieve. The second statistic shows the behavior of the Gini coefficient, a measure of
how egalitarian the accumulated capital is distributed. The third statistic shows average
log income, which generally behaves as expected: after each change the income level
drops temporarily, only to grow continuously thereafter. The fourth statistic shows av-
erage log growth, which falls dramatically immediately after a change, as most strategies
become obsolete, but peaks within no less than ten time steps after the change, indicat-
ing that the recovery process of our evolutionary economy starts almost immediately
after a change. The fifth statistic measures the variance of partial strategies within the
population and shows how the heterogeneity of strategies is affected by a change in pro-
duction coefficients. As discussed in Section 5.2.3, at equilibrium the square root of this
variance approaches the value of the diversity control parameter σ. The sixth and final
statistic measures the covariance between log income and connectivity, to emphasize
the effect of a skewed distribution of connectivity on the evolutionary process. It shows
how the correlation between log income and network connectivity rises each time that
a new change in the production coefficients is initiated. Evidently the highly connected
agents are among the first to learn and profit from the improved strategies.

When read in combination with statistic one through four on economic performance,
the fifth statistic on the variance of partial strategies allows us to identify the different
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phases of the adaptive evolutionary search process. After each onset of a new environ-
mental change the standard deviation of partial strategies peaks for a brief period, then
drops rapidly, and finally returns slowly to its former state. This shows that in the imme-
diate aftermath of a change those agents that were previously most successful loose their
attractive power—average efficiency is at its lowest—and that the diversity of the pool of
strategies increases significantly. This is the early phase of unstructured exploration.
As the agents evaluate new strategies, some agents are more successful than others—
average efficiency rises again—and get heavily imitated, leading to a rapid decline in
diversity. This is the second phase of structured, directed search. What is remarkable
is that during this second phase the average efficiency declines for a second time and
reaches a low point between ten to twenty time steps after the onset of the environmen-
tal change. Finally, during the last phase of exploration, the agents seem to finally settle
into the new order. Average efficiency increases again, and as more and more agents
approach the (moving) optimum, they diversify around it.

5.6 Conclusions

We have studied the general question of how different types of environmental dynam-
ics affect behavioral interaction in an evolutionary economy. For this purpose a simple
model of evolutionary formation of investment strategies through variation and selec-
tion was presented. Variation occurs when an agent replaces its own strategy by that of
another agent (imitation) in an imperfect way. Selection occurs when an agent bases
its choice to imitate another agent on some property of the other agent, here individ-
ual income growth. The evolutionary mechanism has one free parameter that controls
diversity by defining how closely agents imitate each other. This parameter has a clear
policy dimension as there are various laws and regulations that regulate how closely
agents imitate each other.

If agents in an economy with a Cobb-Douglas type production function use rela-
tive income growth rate to determine which agent to imitate, the evolutionary dynam-
ics are governed by the equilibrium growth rate of a strategy. This equilibrium growth
rate is uniquely determined by the production coefficients of the Cobb-Douglas func-
tion. Modeling environmental dynamics as dynamic changes in these production coef-
ficients enables us to study the impact of such environmental dynamics on the optimal
behavioral interactions. This is a general approach that can be applied to model tech-
nological or macroeconomic dynamics as well as environmental hazards like (climate
change induced) desertification and diseases.

We specified four different types of environmental dynamics that differ in the gradu-
alness and frequency of change. We further specified one control system without imita-
tion and one control system with imitation and a static environment. To achieve general
results that are valid for a broad class of economies, all numerical results were based on
large number of computer simulations, each with different instances of those factors
that affect the evolutionary dynamic.

Our first research question was whether or not different values for the diversity con-
trol parameter are optimal under different environmental dynamics. We established
that for almost all tested values of this parameter and all tested environments the agents
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quickly adapt and find strategies with a positive equilibrium growth rate. We found fur-
ther that each environmental dynamics has a unique optimal diversity that maximizes
log income. This optimum increases with the frequency and rapidity of the changes.

Our second research question was whether or not different policies can be defined
for different degrees of risk aversion when the type of environmental dynamics is un-
known. Here we found that if there is uncertainty about the environmental dynamics,
the optimal value for σ increases with the degree of risk aversion. The generality of our
findings were confirmed by control experiments that tested for scalability and sensitivity
of the economic parameters and that used alternative implementations of the imitation
mechanism.

Various types of public policies directly and indirectly affect the imitation behavior
of economic agents, the diversity of their investment strategies, and their ability to adapt
to a changing environment. Numeric simulations of stochastic multi-agent systems can
be used to evaluate such policies even when there is uncertainty on the specific nature
of the environmental dynamics. Despite, or rather because of, their stochastic nature
they can identify the preferred policy under a particular degree of risk aversion.

Appendix 5.A Evolution with variable prices

The interested reader will be curious to know how variable prices affect the evolutionary
process. Regardless of the market structure and price formation, equation 5.2 for non-
aggregate growth per investment sector i can be extended to include a dynamic price
pi (t ),

Ki a(t ) =
si a(t )Ya(t −1)

pi (t )
+ (1−δ)Ki a (t −1). (5.21)

The ratio of capital to income (equation 5.13) now converges to

lim
t→∞

Ki a(t )

Ya(t )
= lim

t→∞

si a(t )/pi (t )

γa(t )+δ
. (5.22)

The existence of this limit and the speed of convergence depend on the behavior of pi (t ).
If the price converges, the ratio of capital to income will converge as well. In that case
the growth rate at equilibrium is

γa(t ) =β
∏

i

pi (t )−πi (t )
∏

i

si a(t )πi (t )
−δ. (5.23)

That is, as long as the market structure does not prevent the capital-income ratio to con-
verge in reasonable time, variable prices have a similar effect on the evolutionary pro-
cess as the scaling factor. Both are monotonic transformations of the growth function
that do not affect the evolutionary dynamics.
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Typical area plot for a static environment

1 100 200 300 400 500
0

1

Another typical area plot

1 100 200 300 400 500
0

1

Average efficiency of all strategies

1 100 200 300 400 500

0.6

0.8

1
Gini coefficient

1 100 200 300 400 500
0

0.2

0.4

0.6

Average log income

1 100 200 300 400 500
0

1

2

3

4

Average log income growth

1 100 200 300 400 500
-0.01

0

0.01

0.02

Average variance of all strategies

1 100 200 300 400 500
0

0.01

0.02

0.03

0.04
Covariance log income–connectivity

1 100 200 300 400 500
-0.2

0

0.2

0.4

Figure 5.5: Average time evolution of an economy without imitation (the environment
is static).

The two area plots on top show single random sequences of production coefficients.
The other statistics are averaged over 10,000 simulations. The x-axis shows the 500 time
steps while the y-axis shows the respective statistics.
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Typical area plot for a static environment
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Figure 5.6: Average time evolution of an economy with imitation and a static environ-

ment.

The two area plots on top show single random sequences of production coefficients.
The other statistics are averaged over 10,000 simulations. The x-axis shows the 500 time
steps while the y-axis shows the respective statistics. Note how most statistics have
stabilized during the first 100 steps of the initialization phase.
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Typical area plot for gradual, low freq. changes
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Figure 5.7: Average time evolution of an economy with imitation and a dynamic envi-
ronment characterized by gradual, low frequency changes.

The two area plots on top show single random sequences of production coefficients.
The other statistics are averaged over 10,000 simulations. The x-axis shows the 500 time
steps while the y-axis shows the respective statistics.
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Typical area plot for gradual, high freq.
changes
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Figure 5.8: Average time evolution of an economy with imitation and a dynamic envi-
ronment characterized by gradual, high frequency changes.

The two area plots on top show single random sequences of production coefficients.
The other statistics are averaged over 10,000 simulations. The x-axis shows the 500 time
steps while the y-axis shows the respective statistics.
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Typical area plot for sudden, low freq. changes
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Figure 5.9: Average time evolution of an economy with imitation and a dynamic envi-
ronment characterized by sudden, low frequency changes.

The two area plots on top show single random sequences of production coefficients.
The other statistics are averaged over 10,000 simulations. The x-axis shows the 500 time
steps while the y-axis shows the respective statistics.
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Typical area plot for sudden, high freq.
changes

1 100 200 300 400 500
0

1

Another typical area plot

1 100 200 300 400 500
0

1

Average efficiency of all strategies

1 100 200 300 400 500

0.6

0.8

1

Gini coefficient

1 100 200 300 400 500
0

0.005

0.01

0.015

0.02

Average log income

1 100 200 300 400 500
0

1

2

3

4

Average log income growth

1 100 200 300 400 500
-0.01

0

0.01

0.02

Average variance of all strategies

1 100 200 300 400 500
0

0.01

0.02

0.03

0.04
Covariance log income–connectivity

1 100 200 300 400 500
-0.2

0

0.2

0.4

Figure 5.10: Average time evolution of an economy with imitation and a dynamic envi-
ronment characterized by sudden, high frequency changes.

The two area plots on top show single random sequences of production coefficients.
The other statistics are averaged over 10,000 simulations. The x-axis shows the 500 time
steps while the y-axis shows the respective statistics.
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