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ABSTRACT

We present and evaluate a method for estimating the rel-
evance and calibrating the values of parameters of an evo-
lutionary algorithm. The method provides an information
theoretic measure on how sensitive a parameter is to the
choice of its value. This can be used to estimate the rel-
evance of parameters, to choose between different possible
sets of parameters, and to allocate resources to the cali-
bration of relevant parameters. The method calibrates the
evolutionary algorithm to reach a high performance, while
retaining a maximum of robustness and generalizability. We
demonstrate the method on an agent-based application from
evolutionary economics and show how the method helps to
design an evolutionary algorithm that allows the agents to
achieve a high welfare with a minimum of algorithmic com-
plexity.

Categories and Subject Descriptors
I.6.5 [Simulation and Modelling]: Model Development I.2.11
[Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Experimentation, Performance, Economics

Keywords
Parameter control, evolutionary algorithms, agent-based sim-
ulations, model selection, information theory

1. INTRODUCTION
One of the canonical challenges in evolutionary computing

is to select and calibrate parameters of an evolutionary al-
gorithm (EA) [6, 7], i.e., parameters that regulate variation
(mutation and recombination), selection, population size,
and so on. Often these parameters need to be optimized
such that the EA delivers good and robust solutions for a
whole family of similar problems. This is true for the “tradi-
tional” optimization and design applications. For instance,
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when solving a scheduling task with a genetic algorithm, it
can be hard to establish good values for the mutation rate,
crossover rate, tournament size and population size that give
good solutions for all possible problem instances. The prob-
lem intensifies in more complex applications like agent-based
simulations used for artificial life, artificial societies and evo-
lutionary economics. In such applications evolution is not
only the “problem solver” that is expected to lead to “opti-
mality” in some application specific sense. It also has to fit
in with the general system description and provide a better
understanding of the general dynamics of the evolutionary
system under investigation. This often forces the evolution-
ary algorithm to include problem specific features that need
to be correctly parametrized. For instance, mating selection
might depend on past interactions between individuals, or
mutation might be sensitive to environmental factors. When
selecting and calibrating the parameters for such complex
evolutionary systems, common EA wisdom (heuristics and
conventions learned over the last decades) regarding EA se-
tups is hardly applicable, since this wisdom is mainly based
on applications of the traditional type.

In this paper we present the parameter calibration and
relevance estimation (CRE) method, a numerical method
to select and calibrate the parameters of any evolutionary
algorithm that strives for general validity. The rationale be-
hind the CRE method is that the simpler the calibration,
the broader the set of different problems it can be applied
to with success. This principle has long been known as
Occam’s Razor and has been put on sound mathematical
footing by the theory of algorithmic complexity, formulated
simultaneously by R. Solomonoff [17], A. Kolmogorov [12]
and G. Chaitin [4, 5]. Unfortunately, the algorithmic com-
plexity of an arbitrary set of values is not computable. To
avoid this problem, the CRE method works on distributions
over parameter values and not on the actual values them-
selves. The algorithmic complexity of values drawn from a
distribution can be estimated directly from the Shannon en-
tropy of that distribution [16]. The CRE method uses the
Shannon entropy to estimate the relevance of a parameter.

The objectives of the CRE method are:

1. To estimate how sensitive the performance of the evo-
lutionary algorithm is to the used values of each pa-
rameter.

2. To calibrate the parameters, that is, to identify good
values for them.

We demonstrate the CRE method with an agent-based
application from evolutionary economics. The application is



needed for proof of concept but we could have implemented
any other evolutionary process. We provide a brief sum-
mery of the agent-based application, the non-linear system
dynamics that the agents have to adapt to, and the specific
evolutionary algorithm which consists of random innovation
(mutation) and selective imitation (recombination) in a so-
cial peer network. We describe our initial evolutionary algo-
rithm of 13 parameters, reflecting our best intuitions on the
evolutionary dynamics in the given context. Next we de-
scribe the details of the CRE method and demonstrate how
the CRE method effectively disproves our initial intuitions.
Instead, it leads us to a simplified evolutionary algorithm
with only 6 parameters that reaches the same level of per-
formance. Because it does so with less complexity and infor-
mation, we conclude that its predictive power and general
validity have improved.

Related Work. Eiben e.a. established parameter con-
trol in EAs as an important research question [6]. A practi-
cal method to find good parameter settings for an EA was
introduced by François and Lavergne in [10], using numerical
simulations to estimate the functional relationship between
parameter values and the performance of the EA, both for a
single test case and for multiple test cases (generalization).
Some fundamental insights by A. Kolmogorov on the re-

lation between individual data and (probabilistic) sets that
contain them where published only recently [20]. Early at-
tempts to relate the generalization power of a statistical
model to some practical estimate of algorithmic complexity
were based on the number and precision of the parameters
involved: first the Akaike Information Criterion (AIC) [1]
and then Rissanen’s theory of Minimum Description Length
(MDL) [15]. Later, J. Rissanen, A. Barron and B. Yu devel-
oped a version of MDL based on parametric complexity [3].
All these methods are based on a functional analysis of the
statistical model in question. This is not possible here, sim-
ply because no analytic tool can tell us how many previously
unsolvable problems can be solved by adding feature x to an
EA. The CRE method is intended to fill this gap by numer-
ical estimation.

2. THE AGENTBASED APPLICATION
The agent-based application treated here is concerned with

a fixed number of economic agents that operate in a sim-
ulated economic environment [14]. The welfare or fitness
of the agents is determined by their individual investment
strategies. Each cycle t of a simulation is divided into two
steps: 1) updating the economy—in accordance with its re-
spective investment strategy Sa,t each agent a distributes
its income Ya,t over consumption and a number of capital
sectors. A fixed set of growth and production functions is
then used to calculate the new income Ya,t+1 for each agent.
We use the consumption of an agent to measure the welfare
or fitness Wa,t of that agent. 2) updating the strategies—all
agents change their respective investment strategy Sa,t si-
multaneously into the new strategy Sa,t+1. This process of
collectively changing the strategies constitutes an evolution-
ary process that is described hereafter. During the initial-
ization phase of the simulation (50 cycles) all strategies are
fixed. During the main experimental phase (500 cycles) all
agents are free to change their strategy.

System Dynamics. The level of technology and there-

fore the productivity of each capital sector grows with the
cumulative investment of all agents in that sector. The speed
with which the productivity improves with investment is dif-
ferent for each sector, rendering some sectors economically
more attractive than others. We distinguish between viable
technologies where investment in the corresponding capital
sector will eventually pay off, and nonviable technologies
where investment will never pay off. The economic model
also has one capital sector that causes economic damage
through climatic change. Investment in that sector should
be minimized.

The result of these complex non-linear dynamics is that
the investment strategy that maximizes the income of an
agent changes during the run of a simulation. The only
information the agents have on the current relation between
income and strategies is the amount of income that each
agent achieves with its current strategy. Agents can compare
the welfare (fitness) of their peers and choose the agent with
the highest welfare to imitate (i.e., recombine with) a part
or all of that agent’s strategy. An agent can also create a
new strategy by innovation (i.e., mutation), which it does
by applying some random change to its current strategy.

Social Peer Network. The agents of our application
exchange information through a social peer network. The
importance of such peer networks for economic simulations
is discussed in [18]. According to Tomasini, an evolutionary
algorithm with spatial structure is of advantage when deal-
ing with dynamics problems [19]. Lieberman ea. have shown
that spatial structures like scale free networks are a po-
tent selection amplifier for mildly advantegous mutants [13].
We use bidirectional peer networks that are generated by a
stochastic growth process prior to each run of the simulation.
In accordance with the current theory on social networks we
ensure that these networks have random connectivity [8, 9],
a high cluster coefficient [21], and a scale free degree distri-
bution [2] (actually a gamma distribution with an exponent
between 2 and 3). The average connectivity k is a free pa-
rameter of the evolutionary algorithm and varies between 2
and 30.

Fitness and Performance Measures. We measure the
welfare or fitness Wa,t of each agent by how much the agents
invests in consumption. The aim of the CRE method is to
find a calibration C of the evolutionary algorithm that allows
the agents to achieve a high welfare or fitness in a broad set
of simulations. To this end we need a performance measure
F(C) that relates a calibration to the aggregate welfare (i.e.,
welfare at the population level) that the agents achieve with
this calibration. A variety of measures for aggregate welfare
are used in economics. They differ in how to correct for
risk, social equality, stability of growth, and the discount
rate to compare welfare over time. We have found that the
results obtained by the CRE method are quite similar for
all aggregate welfare measures tried so far and we limit us
here to only one measure for F(C): the discounted mean log
welfare

F(C) =
∑

t

δ
t
∑

a∈A

logWa,t

|A|

where |A| is the size of the population and where the dis-
count rate is δ = 0.97.
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3. THE EVOLUTIONARY ALGORITHM

Representation, Individuals and Population. It is
important to note that in this EA agents and strategies are
not the same: an agent carries or maintains a strategy, but it
can change its strategy and we still consider it as the same
agent. This dichotomy is necessary so that we can main-
tain a social network among the agents, while evolving, i.e.,
changing, the strategies. Because every agent has exactly
one strategy at a time, the number of active strategies is
the same as the number of agents. The population size (in
the search space of strategies) is thus constant and equals
the number of agents.
We represent an economic investment strategy Sa,t as an

n-dimensional investment vector that specifies the fractions
I1, . . . , In of income that agent a invests at cycle t in con-
sumption and the n− 1 available capital sectors. Formally,
a candidate solution or individual strategy is defined as:

Sa = 〈I1, . . . , In〉,

n
∑

i=1

Ii = 1

with each Ii ∈ [0, 1].

Fitness and Selection. An agent is evaluated accord-
ing to the strategy it carries. It is essential to our model
that the fitness of a strategy is determined by the welfare
of its hosting agent relative to that of its peers in the social
network. This implies that the structure of the social net-
work has a direct effect on the definition of fitness, hence on
the sType name of new folderelection mechanism. The first
step in determining the selection probabilities is to rank all
agents and their peers according to their respective welfare
or fitness. The normalized rank ra(b) ∈ (0 1] is the position
of agent b among the peers of a (including a), divided by
the size of this group.

ra(b) =
|{c | c ∈ Na ∪ a, Wc ≤ Wb}|

|Na|+ 1

where Na are the peers of agent a. In case of equal welfare
or fitness, i.e., if Wa = Wb, agents have the same rank. Note
that the best agent of a group always has rank 1 while the
worst one has rank 1

|Na|+1
which is close to zero.

We introduce two probabilistic selection mechanisms: one
to decide whether a given strategy will be changed by ran-
dom innovation and one to decide whether it will be changed
by selective imitation from a peer in the social network. In
terms of traditional evolutionary computing (EC) [7], inno-
vation and imitation correspond to mutation and recombi-
nation. However, there is an important difference between
imitation as used here and usual recombination in EC. In EC
the two recombinants have a symmetrical role: they both re-
ceive (genetic) information from each other and incorporate
it into the offspring. In our imitation mechanism the roles
are asymmetrical. One agent imitates the other by receiving
its strategy and recombining it with its own. The imitating
agent changes, while the agent that is imitated does not.
Reflecting our best knowledge and intuition on social sys-

tems, we assume that these selection mechanisms should
work differently for agents that have a high fitness (i.e., a
high welfare relative to their respective peers) and for agents
that have a low fitness (i.e., a low welfare relative to their re-
spective peers). We therefore create two sets of parameters

for each selection mechanism: two for agents with a high fit-
ness (specified by a subscript r for rich), and two for agents
with a low fitness (specified by a subscript p for poor). We
also introduce two threshold parameters: one parameter mf

to specify which fraction of the agents define themselves as
fit with regard to innovation (mutation), and one parameter
mg to specify which fraction of the agents define themselves
as fit with regard to imitation (recombination).

Innovation. Innovation in our simulation is implemented
by Gaussian mutation. That is, an agent innovates by chang-
ing its strategy vector by the addition of random noise drawn
from a Gaussian distribution with zero mean. This implies
that small mutations are more likely than large ones. The
parameters fp and fr (for poor and rich agents respectively)
specify the probability that an agent will apply a random
change to its strategy at each cycle of the simulation,

P [a innovates] =

{

fp if ra(a) ≤ mf

fr if ra(a) > mf

.

The parameters σp and σr specify the standard deviation
of the random change that is applied to a strategy when
an agent innovates. The exact formula for changing the
strategy vector St into S′

t+1 is

S
′
a,t+1 =

{

Sa,t +N(0, σp) if ra(a) ≤ mf

Sa,t +N(0, σr) if ra(a) > mf

where N(0, σ) denotes a normally distributed random vector
with zero mean and standard deviation σ. In order to avoid
negative investments we add the additional constraint that
Sa,t +N(0, σ) is non-negative.

Imitation. Imitation is performed by combining two
strategies through linear combination. The resulting vec-
tor replaces the strategy of the imitating agent, the strategy
of the imitated agent remains the same. The parameters gp
and gr specify the probability that an agent will imitate at
each cycle of the simulation

P [a imitates] =

{

gp if ra(a) ≤ mg

gr if ra(a) > mg

.

If agent a imitates, it needs to choose another agent b to
imitate. The parameters hr and hp specify the fractions of
rich peers from which the agent chooses a random peer to
imitate. That is, a poor agent (ra(a) ≤ mg) chooses an
agent to imitate according to

P [a imitates b] =

{

0 if ra(b) ≤ hp

1

⌈(1−hp)|Na|⌉
if ra(b) > hp

.

and a rich agent (ra(a) > mg) chooses an agent to imitate
according to

P [a imitates b] =

{

0 if ra(b) ≤ hr

1
⌈(1−hr)|Na|⌉

if ra(b) > hr

If a imitates b, then the strategy Sa,t is linearly combined
with Sb,t into S′

a,t+1, according to

S
′
a,t+1 =

{

(1− wp)Sa,t + wp Sb,t, if ra(a) ≤ mg

(1− wr)Sa,t + wr Sb,t, if ra(a) > mg

where w is the weight that is given to the imitated strategy.
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Table 1: The 13 initial parameters of the evolution-
ary algorithm. All parameters have the initial range
0–1 except for connectivity which has 2–30. Col-
umn 3 and 4 are explained in Section 5.

parameter θ
mean std. de-
K(Cθ) viation

k average connectivity 0.1 0.2

mf threshold rank for innovation 0.3 0.4

fp P [poor agent innovates] 1.0 0.7

fr P [rich agent innovates] 3.9 1.4

σp innovation variance of poor agent 1.8 1.4

σr innovation variance of rich agent 2.2 1.4

mg threshold rank for imitation 0.1 0.1

gp P [poor agent imitates] 0.5 0.3

gr P [rich agent imitates] 0.3 0.3

wp imitation weight of poor agent 0.3 0.3

wr imitation weight of rich agent 0.2 0.2

hp imitated neighbors of poor agent 0.2 0.2

hr imitated neighbors of rich agent 0.6 0.7

Since the fractions of income have to sum up to one, as the
last step in performing imitation, the strategy is normalized:

Sa,t+1 =
S′
a,t+1

|S′
a,t+1|

Full Evolutionary Model. The resulting 13 parameters
are shown in the first two columns of Table 1. On top of the
“traditional” task of finding good values for these parame-
ters we want to know if they are 1) indeed relevant for the
evolutionary algorithm and 2) sufficient to calibrate the sys-
tem. We call a parameter relevant if with some values for the
parameter the evolutionary algorithm consistently reaches a
higher performance, in this case a higher aggregate welfare
for the agents. Calibration of a relevant parameter therefore
significantly improves the performance of the evolutionary
algorithm. An irrelevant parameter on the other hand does
not influence the performance of the evolutionary algorithm,
no matter what value it takes, and it should be removed for
the sake of analytic clarity and computational stability. If
a parameter proves to influence the performance, but the
parameter values for which the performance is highest are
highly sensitive to changes in the specification of the sim-
ulation, the parametrization is not sufficient. In this case
more parameters need to be added to the respective com-
ponent of the evolutionary algorithm in order to capture all
the necessary information.

4. THE CRE METHOD
As discussed in the introduction, the main objective of

the parameter calibration and relevance estimation (CRE)
method is to find a set of relevant parameters, to find good
values for these parameters, and to establish how accurate
these values have to be. One could say that we are after a
good evolutionary system that allows the agents to achieve
a high performance not only in one particular simulated en-
vironment, but in as many simulated environments as pos-
sible. Since we assume that this depends largely on the
algorithmic complexity of the model, we define “good” as

having a good tradeoff between performance and algorith-
mic complexity. Thus, the quality of any given list of param-
eters and a specific vector of values x for these parameters
is determined by the performance F(x) obtained by running
the simulation using x, and the information or algorithmic
complexity K(x) needed to specify x. We start the formal-
ization of this matter by defining the term calibration as a
distribution over parameter vectors.

Calibration. Let M = 〈θ1, . . . , θk〉 be a list of k parame-
ters with an initial finite1 domain of possible values for each
parameter θi and let XM stand for the Cartesian product of
these domains. Then a calibration C is a distribution C(x)
over all possible parameter settings x ∈ XM . We define C0

to be the uniform distribution over XM and Cθ to be the
marginal distribution of C(x) on parameter θ.

Calibration Performance. We can now define calibra-
tion performance F(C) as the expected performance when
drawing the parameter settings from the calibration distri-
bution C

F(C) = E
x∈XM

[C(x)F(x)] .

Calibration Complexity. Algorithmic complexity as
understood by A.N. Kolmogorov [12] is the minimum amount
of information needed to compute a vector of values x. While
algorithmic complexity itself is not computable, it is suffi-
cient for our purpose to estimate it from the Shannon en-
tropy2H(C) of the distribution C(x). The probability that
the true algorithmic complexity K(x) of any x chosen by the
distribution C(x) is significantly lower than the Shannon en-
tropy of C(x) is exponentially low [11] and can be neglected.
We define calibration complexity as

K(C) = H0 −H(C).

where H0 is the average entropy of calibrations that the
CRE method produces when fed with white noise. This will
be explained shortly. Calibration complexity estimates the
amount of additional information needed to calibrate a set
of parameters, given that we have already specified a finite
parameter space XM . We use binary bits as the unit of
Shannon entropy and calibration complexity.

Minimax Calibration. Not all possible calibrations are
equally interesting to us. Of all calibrations that achieve a
given performance we are only interested in those of the low-
est complexity. And of all calibrations of a given complex-
ity we are only interested in those that achieve the highest
performance. While we assume that a calibration that satis-
fies both constraints generally does not exist, it is essential
that the CRE method comes reasonably close to produc-
ing minimax calibrations because these are the only cal-
ibrations of any practical interest. We loosely define an
approximate minimax calibration as a calibration Ci that
has the following properties: no calibration Cj with per-
formance F(Cj) = F(Ci) is significantly less complex (i.e.,
no K(Cj) ≪ K(Ci)) and no calibration Ck with complex-
ity K(Ck) = K(Ci) can perform significantly better (i.e., no
F(Ck) ≫ F(Ci)).
1If the initial domain is R we can use a transformation like
the sigmoid to make it finite.
2Shannon entropy is defined as H(C) = −

∑

x
C(x) log C(x).
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Figure 1: Diagram of the CRE method

Fill the pool O with 150 drawings from C0(x).

Execute 5 independent runs of the simulations for each
new x ∈ O and measure the average performance F(x).

Calculate the performance F(Ci) as the average over
F(x) of all x drawn from Ci.

Calculate the complexity K(Ci) = H0 −H(Ci).

Choose the set Bi as the 100 x ∈ O with the highest
performance F(x).

Bi is an estimator of conditional marginal contribution
and defines the new calibration Ci+1.

Replace the 10 oldest x ∈ O by 10 new drawings from
the new calibration Ci+1.

❄ ❄

❄

❄

❄

❄

Conditional Marginal Contribution. At the heart
of the CRE method lies a reliable estimation of conditional
marginal contribution of parameter values to performance.
By this we mean the contribution of the values of a spe-
cific parameter to performance (hence marginal) if the dis-
tribution of values over the other parameters are fixed by a
specific calibration (hence conditional).

The Search Algorithm. We use an iterative algorithm
that produces a series of approximate minimax calibrations
of increasing complexity and performance. As shown in Fig-
ure 1, we work with a pool O of 150 different parameter
settings x. These are initially drawn from C0, the uniform
distribution over the finite parameter space X . At each iter-
ation i we replace the oldest 10 x from O by 10 new x drawn
from the latest calibration Ci, calculated below. We run the
simulation 5 times for each new setting and measure the
average performance F(x) from the aggregate welfare mea-
sure discussed in Section 2 (we independently verified that
5 runs produce a reliable estimator of the average perfor-
mance). We measure the performance F(Ci) as the average
over F(x) of all x that were drawn from Ci. Finally we rank
all x ∈ O according to the individual performance F(x) and
select the best 100 settings Bi.
The density of Bi is a good estimator of the conditional

marginal contribution of the parameters to performance: the
higher the density over a certain range of a parameter, the
higher the marginal contribution of values from that range
to performance, conditioned on the fact that the values for
the other parameters were chosen from the current and pre-
vious calibrations. We consider the Shannon entropy of this
density to be an excellent estimator of parameter relevance.
Figure 2 shows how the density of Ci over two parameters
changes during a search. The Shannon entropy of the den-
sity of Bi decreases much faster for the innovation variance
σr than for the imitation weight wr.
We use a two step process to generate the next distribu-

tion Ci+1 from the the density of Bi. When drawing a new x

from Ci+1, we first draw a random member y ∈ Bi for each
parameter θ ∈ M . When drawing this y it is absolutely

innovation variance σr

0 50 100 150
0

0.2

0.4

0.6

0.8

1

 

 
80%
50%

imitation strength wr

0 50 100 150
0

0.2

0.4

0.6

0.8

1

 

 
80%
50%

Figure 2: Example of how the density of Bi changes
during the search. The x-axis shows the iterations i

of the search, the y-axis shows the parameter ranges.
Each point i along the x-axis is a crosscut through
the corresponding calibration Ci, reflecting the den-
sity of the 100 best settings Bi along the parameter.
50% of Bi are concentrated between the two solid
lines, 80% between the dashed lines. The graphs
are taken from an experiment with 200 agents, 2
nonviable technologies and low vulnerability.

essential that we give a slightly higher probability to those
members ∈ Bi that have the lowest density. This minimizes
the Shannon entropy of C and ensures that the method ap-
proximates the minimax calibration. Next we determine the
parameter range that is formed by the two members ∈ Bi

that are the closest upper and lower neighbors of y along the
parameter. We now determine the value of the parameter
for the new x by drawing a random value from this range.

To give an example, let us draw a new value for f , the
chance to innovate. We first draw a random y ∈ Bi, say with
value yf = 0.959. Assume the closest neighbors ∈ Bi with
regard to the innovation rate have values 0.955 and 0.961.
The final parameter value xf for the innovation rate will
now be drawn from the uniform distribution [0.955–0.961].

Calculating Complexity. When measuring the calibra-
tion complexity, we need to correct for the effects of noise.
Due to the random nature of the CRE method, the Shan-
non entropy of the density of Bi is always lower than the
Shannon entropy of the uniform distribution, even when the
contribution to performance is uniform over all parameters.
We can measure this trivial decrease in Shannon entropy by
replacing the performance measurements from actual simu-
lations by white noise and we found that for every parameter
θ the resulting Shannon entropy Hθ

0 is typically 0.9 bit lower
than the Shannon entropy of the uniform distribution over
θ. Since we are only interested to know how much the Shan-
non entropy of Ci differs from this trivial entropy level, we
calculate the calibration complexity of each parameter θ as
K(Cθ

i ) = Hθ
0 −H(Cθ

i ). And since Ci is constructed form the
marginal distributions Cθ

i , which therefore contain all the
necessary information, we have K(Ci) =

∑

θ
K(Cθ

i ).
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Interpretation of the Results. As the search pro-
gresses, the CRE method produces approximate minimax
calibrations of increasing performance and complexity. These
can be plotted in a convenient way so that we can use vi-
sual inspection to select calibrations with a good perfor-
mance/complexity tradeoff. As can be seen in Figure 3,
F(C) usually stops to significantly increase much earlier than
K(C). Once the incease in performance has come to an ob-
vious halt the CRE method can be safely terminated. The
performance/complexity tradeoff has passed its maximum
and will only decline.
We can use the minimum complexity needed for any given

performance to compare the calibration of different sets of
parameters. If two sets of parameters can achieve equiva-
lent performance, we can select the set that achieves this
performance with less complexity as the one that will likely
be of a more general value. We are also interested in K(Cθ),
the calibration complexity per parameter θ. The higher this
complexity, the more information is needed to calibrate the
parameter. When applying the EA to a new problem, such
a parameter is more likely to be miss-calibrated than a low
complexity parameter and consequently deserves more at-
tention from the practitioner. A low complexity on the other
hand (say K(Cθ) < 1 bit) is an indication that a parameter
is irrelevant and could be removed from the evolutionary
model.
The 25th and 75th percentile of the calibration distribu-

tion on each parameter θ are what we consider the practical
calibration of the CRE method: the values from this range
have the highest conditional marginal contribution. As long
as the parameters of our EA stay within this range we are
confident of a high performance.

5. EXPERIMENTS
The aim of the CRE method is to find a calibration of

the evolutionary algorithm that allows the evolutionary al-
gorithm to achieve a high level of performance in a broad
set of different problem specifications. In the present ap-
plication we want the economic agents to achieve a high
welfare or fitness in a broad set of simulated economic en-
vironments. In order to demonstrate the CRE method, we
add three scaling parameters to the agent-based application
described in Section 2. These parameters allow us to define
a total of 18 simulated economic environments. They are:

• the number of agents (200 or 2000).

• the number of capital sectors with nonviable alterna-
tive technologies (2, 20, or 200). In all cases the sim-
ulation has exactly one capital sector with a viable
technology and the number of nonviable technologies
controls the difficulty of finding this viable technology.

• the vulnerability (“low”, “moderate”, or “high”) of the
agent economies to climatic change. Exactly one capi-
tal sector leads to climatic change and the agents have
to avoid investing in this sector.

Starting with the initial parameter set of 13 parameters
described in Section 3 we search for calibrations that have
a good performance/complexity tradeoff. We do so for each
of the 18 environments. We then average the calibration
complexity of each parameter over the good calibrations of

calibration performance F(Ci)
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2 nonviable technologies
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200 nonviable technologies

calibration complexity K(Ci)
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Figure 3: Illustration of the change in calibration
performance and calibration complexity for the ini-
tial evolutionary model of 13 parameters. The x-axis
shows the first 150 iterations i of a search, the y-axes
show calibration performance F(Ci) and calibration
complexity K(Ci). The graphs are from 3 experi-
ments with 200 agents, low vulnerability and 2, 20,
and 200 nonviable technologies.

all environments. We used this average complexity to decide
if a parameter is relevant or not.

As the CRE method searches for a good calibration, both
the performance and the complexity of the investigated cal-
ibrations increase almost monotonically. Figure 3 illustrates
this with graphs of F(C and K(C) from three different envi-
ronments. The increase in calibration performances is great-
est at the beginning of a search, slows down soon, and comes
to a halt somewhere between iteration 60 and iteration 90.
Calibration complexity on the other hand increases linearly
until about iteration 100. In most simulated environments
it continues to increase even after that. Visual inspection
of the results of all experiments leads us to conclude that
the trade off between performance and complexity is best
between iteration 75 and 85 of the CRE method.

Table 1 shows the average complexity per parameter in
bits, together with the standard deviation. The results are
averaged over iteration 75–85 of the CRE method of all 18
simulated environments. Only 4 parameters show a signif-
icant complexity of 1 bit or more, which means that the
performance of the evolutionary algorithm depends heavily
on the calibration of these parameters. On the other hand,
calibration of the other parameters seems largely irrelevant
to the performance of the evolutionary algorithm and their
number should be reduced as much as possible. The 4 rele-
vant parameters define the probabilities to innovate (fp, fr)
for poor and rich agents and the innovation variance (σp, σr)
for poor and rich agents. The CRE method calibrates these
pairs of parameters to similar values (not shown in the table)
and we concluded that they can be combined into one pa-
rameter each. These results thoroughly falsify our original
hypothesis that agent behavior should depend on relative
welfare and that it needs to be calibrated by different sets
of parameters.
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Table 2: The 6 parameters of the simplified evolu-
tionary model, averaged over iteration 75–85. Initial
parameter ranges are 0–1, except for connectivity,
which has 2–30.

parameter θ
mean std. de- 25th+75th

K(Cθ) viation percentiles

k average connectivity 0.1 0.2 5.8–18.2

f P [a innovates] 3.2 1.2 0.01–0.07

σ innovation variance 3.3 1.3 0.02–0.07

g P [a imitates] 0.5 0.4 0.54–0.88

w imitation weight 0.3 0.3 0.41–0.88

h threshold rank imitated 1.0 0.6 0.69–0.93

A Simplified Evolutionary Model. To verify these
conclusions we simplify the evolutionary model by using ex-
actly one parameter for each component shown in Table 2:
connectivity k, probability to innovate f , innovation vari-
ance σ, probability to imitate g, imitation weight w and
the threshold rank h that distinguishes between agents that
can be imitated and that cannot be imitated. Applying the
simplified evolutionary model to all 18 simulated economic
environments reveals that with equal calibration complexity,
the simplified model always achieved a higher performance,
typically 10%, see Figure 4. (We also tried evolutionary
models with intermediate numbers of parameters but the
improvements were less significant.)
After concluding that the simplified set of evolutionary

parameters has a far better performance/complexity payoff,
we still need to choose a calibration for it. Figure 5 shows
how the CRE method calibrates the parameters of the sim-
plified model. When comparing the graphs of welfare and
complexity visually we find that the best payoff between wel-
fare and complexity is again achieved in the neighborhood
of iteration 80 of the search. Table 2 shows the average cal-
ibration complexity K(Cθ) and its standard deviation and
the 25th and 75th percentile of Cθ(x) for each parameter of
the simplified model, averaged over calibration 75-85 of the
CRE method and all tested environments.
As with the initial set of parameters, innovation proves

to be the most sensitive part of the simplified evolutionary
model. Both the probability to innovate and the innova-
tion variance have to be well calibrated in order to allow the
agents to adapt to their environment. The calibration of h
(the fraction of richer neighbors to be imitated) also shows
significant impact on aggregate welfare. The imitation pa-
rameters and the average number of neighbors prove almost
irrelevant.

6. CONCLUSIONS
The CRE method provides us with useful measures of cal-

ibration complexity, both numerically in the form of Shan-
non entropy and visually in the form of percentiles. Visual
inspection and manual addition or removal of parameters
proves sufficient to select and calibrate the relevant param-
eters of an evolutionary system. When comparing the ini-
tial and the final simplified sets of parameters we find that
with equal calibration complexity the final set of parame-
ters consistently achieves a significantly higher welfare for
the agents.
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Figure 4: Welfare as a function of calibration com-
plexity. The x-axis shows calibration complexity as
it increases during the search. The y-axis shows ag-
gregate welfare. The right cut off of each graph
marks the complexity the calibration has reached
after 250 iterations of the CRE method, not an ab-
solute maximum. The graphs are taken from an
experiment with 200 agents, 2 nonviable alterna-
tive technologies and low vulnerability to climatic
change.

Generality of Results. The calibrations produce stable
and consistent results. Differences in calibration between
environments are small. For example, an increase in the
number of nonviable technologies leads to lower values for
the innovation parameters, apparently because random in-
novation becomes riskier. However, such dependencies show
consistently only in a later stage of the CRE method, typ-
ically beyond iteration 100. The results of iteration 75–85,
which have the best performance/complexity tradeoff, are
similar for all tested environments. At least for the simu-
lated environments discussed here, the CRE method maxi-
mizes the performance of the evolutionary algorithm with-
out compromising general validity.

As mentioned in Section 2, we also tested the method with
a number of different aggregate welfare measure, and again
we found that results were very stable and consistent. If a
calibration led to high welfare according to one measure, it
did so according to most measures.

Minimax Calibration. We verified in independent ex-
periments (not reported here) that the calibrations produced
by the CRE method were good approximations of the max-
imum/minimum calibration: we could not get significantly
better results by relaxing, within feasible bounds, the key
parameters of the method like the pool size, the number
of runs per setting or the extra probability that is given
to low probability ranges. But only an extensive analysis
of different search spaces can asses how close the method
approximates the best possible minimax calibrations.

Application Specific Results. We conclude that most
parameters of our original evolutionary model are not rele-
vant. In particular, there is no evidence that agents should
condition their evolutionary behavior on their own relative
welfare. The innovation parameters are the most relevant
parameters in all versions of the evolutionary model and
their calibration has the biggest influence on agent welfare.
Calibrating the fraction of agents to imitate is also impor-
tant. The details of the social network, in particular the
average connectivity, seem to be irrelevant, but warrant fur-
ther research.
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Figure 5: Calibration of the 6 parameters of the simplified model, averaged over the 18 simulated environ-
ments. The x-axis shows the iterations of the CRE method, the y-axis the parameter range. 50% of Bi are
located between the two solid lines, 80% of Bi between the dashed lines. At iteration 80 (where performance
has stopped to increase) the three parameters f , σ and h show a significant reduction in Shannon entropy.

Simulation Details

The experiments are written and analyzed in Matlab. Eval-
uating a single simulation takes between 1 and 10 seconds on
a 64 bit computer with a 2GHz processor. Searching through
200 iterations of the CRE method amounts to about 10.000
simulations and takes between 3 and 30 hours. Proper op-
timization of the method parameters can reduce the time
complexity of the method by a factor of 10.
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